Tank and helical coil sizing (fluids.geometry)¶

class
fluids.geometry.
TANK
(D=None, L=None, horizontal=True, sideA=None, sideB=None, sideA_a=0, sideB_a=0, sideA_f=1.0, sideA_k=0.06, sideB_f=1.0, sideB_k=0.06, sideA_a_ratio=0.25, sideB_a_ratio=0.25, L_over_D=None, V=None)[source]¶ Bases:
object
Class representing tank volumes and levels. All parameters are also attributes.
Parameters: D : float
Diameter of the cylindrical section of the tank, [m]
L : float
Length of the main cylindrical section of the tank, [m]
horizontal : bool, optional
Whether or not the tank is a horizontal or vertical tank
sideA : string, optional
The left (or bottom for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].
sideB : string, optional
The right (or top for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].
sideA_a : float, optional
The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m]
sideB_a : float, optional
The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m]
sideA_f : float, optional
Dishradius parameter for side A; fD = dish radius [1/m]
sideA_k : float, optional
knuckleradius parameter for side A; kD = knuckle radius [1/m]
sideB_f : float, optional
Dishradius parameter for side B; fD = dish radius [1/m]
sideB_k : float, optional
knuckleradius parameter for side B; kD = knuckle radius [1/m]
L_over_D : float, optional
Ratio of length over diameter, used only when D and L are both unspecified but V is, []
V : float, optional
Volume of the tank; solved for if specified, using sideA_a_ratio/sideB_a_ratio, sideA, sideB, horizontal, and one of L_over_D, L, or D, [m^3]
Notes
For torpsherical tank heads, the following f and k parameters are used in standards. The default is ASME F&D .
f k 2:1 semielliptical 0.9 0.17 ASME F&D 1 0.06 ASME 80/6 0.8 0.06 ASME 80/10 F&D 0.8 0.1 DIN 28011 1 0.1 DIN 28013 0.8 0.154 Examples
Total volume of a tank:
>>> TANK(D=1.2, L=4, horizontal=False).V_total 4.523893421169302
Volume of a tank at a given height:
>>> TANK(D=1.2, L=4, horizontal=False).V_from_h(.5) 0.5654866776461628
Height of liquid for a given volume:
>>> TANK(D=1.2, L=4, horizontal=False).h_from_V(.5) 0.44209706414415373
Surface area of a tank with a conical head:
>>> T1 = TANK(V=10, L_over_D=0.7, sideB='conical', sideB_a=0.5) >>> T1.A, T1.A_sideA, T1.A_sideB, T1.A_lateral (24.94775907657148, 5.118555935958284, 5.497246519930003, 14.331956620683192)
Solving for tank volumes, first horizontal, then vertical:
>>> TANK(D=10., horizontal=True, sideA='conical', sideB='conical', V=500).L 4.699531057009147 >>> TANK(L=4.69953105701, horizontal=True, sideA='conical', sideB='conical', V=500).D 9.999999999999407 >>> TANK(L_over_D=0.469953105701, horizontal=True, sideA='conical', sideB='conical', V=500).L 4.69953105700979
>>> TANK(D=10., horizontal=False, sideA='conical', sideB='conical', V=500).L 4.699531057009147 >>> TANK(L=4.69953105701, horizontal=False, sideA='conical', sideB='conical', V=500).D 9.999999999999407 >>> TANK(L_over_D=0.469953105701, horizontal=False, sideA='conical', sideB='conical', V=500).L 4.699531057009791
Attributes
table (bool) Whether or not a table of heightsvolumes has been generated h_max (float) Height of the tank, [m] V_total (float) Total volume of the tank as calculated [m^3] heights (ndarray) Array of heights between 0 and h_max, [m] volumes (ndarray) Array of volumes calculated from the heights, [m^3] A (float) Total surface area of the tank, [m^2] A_sideA (float) Surface area of sideA, [m^2] A_sideB (float) Surface area of sideB, [m^2] A_lateral (float) Surface area of the lateral side, [m^2] Methods

V_from_h
(h)[source]¶ Method to calculate the volume of liquid in a fully defined tank given a specified height h. h must be under the maximum height.
Parameters: h : float
Height specified, [m]
Returns: V : float
Volume of liquid in the tank up to the specified height, [m^3]

h_from_V
(V)[source]¶ Method to calculate the height of liquid in a fully defined tank given a specified volume of liquid in it V. V must be under the maximum volume. If interpolation table is not yet defined, creates it by calling the method set_table.
Parameters: V : float
Volume of liquid in the tank up to the desired height, [m^3]
Returns: h : float
Height of liquid at which the volume is as desired, [m]

set_misc
()[source]¶ Set more parameters, after the tank is better defined than in the __init__ function.
Notes
Two of D, L, and L_over_D must be known when this function runs. The other one is set from the other two first thing in this function. a_ratio parameters are used to calculate a values for the heads here, if applicable. Radius is calculated here. Maximum tank height is calculated here. V_total is calculated here.

set_table
(n=100, dx=None)[source]¶ Method to set an interpolation table of liquids levels versus volumes in the tank, for a fully defined tank. Normally run by the h_from_V method, this may be run prior to its use with a custom specification. Either the number of points on the table, or the vertical distance between steps may be specified.
Parameters: n : float, optional
Number of points in the interpolation table, []
dx : float, optional
Vertical distance between steps in the interpolation table, [m]

solve_tank_for_V
()[source]¶ Method which is called to solve for tank geometry when a certain volume is specified. Will be called by the __init__ method if V is set.
Notes
Raises an error if L and either of sideA_a or sideB_a are specified; these can only be set once D is known. Raises an error if more than one of D, L, or L_over_D are specified. Raises an error if the head ratios are not provided.
Calculates initial guesses assuming no heads are present, and then uses fsolve to determine the correct dimentions for the tank.
Tested, but bugs and limitations are expected here.

table
= False¶


class
fluids.geometry.
HelicalCoil
(Dt, Do=None, pitch=None, H=None, N=None, H_total=None, Do_total=None, Di=None)[source]¶ Bases:
object
Class representing a helical coiled tube, as are found in many heated tanks and some small nuclear reactors. All parameters are also attributes.
One set of the following parameters is required; inner tube diameter is optional.
 Tube outer diameter, coil outer diameter, pitch, number of coil turns
 Tube outer diameter, coil outer diameter, pitch, height
 Tube outer diameter, coil outer diameter, number of coil turns, height
Parameters: Dt : float
Outer diameter of the tube wound to make up the helical spiral, [m]
Do : float, optional
Diameter of the spiral as measured from the center of the coil on one side to the center of the coil on the other side, [m]
Do_total : float, optional
Diameter of the spiral as measured from one edge of the tube to the other edge; equal to Do + Dt; either Do or Do_total may be specified and the other will be calculated [m]
pitch : float, optional
Height change from one coil to the next as measured from the middles of the tube, [m]
H : float, optional
Height of the spiral, as measured from the middle of the bottom of the tube to the middle of the top of the tube, [m]
H_total : float, optional
Height of the spiral as measured from one edge of the tube to the other edge; equal to H_total + Dt; either may be specified and the other will be calculated [m]
N : float, optional
Number of coil turns; may be specified along with pitch instead of specifying H or H_total, []
Di : float, optional
Inner diameter of the tube; if specified, inside and annulus properties will be calculated, [m]
Notes
Do must be larger than Dt.
References
[R665689] ElGenk, Mohamed S., and Timothy M. Schriener. “A Review and Correlations for Convection Heat Transfer and Pressure Losses in Toroidal and Helically Coiled Tubes.” Heat Transfer Engineering 0, no. 0 (June 7, 2016): 128. doi:10.1080/01457632.2016.1194693. Examples
>>> C1 = HelicalCoil(Do=30, H=20, pitch=5, Dt=2) >>> C1.N, C1.tube_length, C1.surface_area (4.0, 377.5212621504738, 2372.0360474917497)
Same coil, with the inputs one would physically measure from the coil, and a specified inlet diameter:
>>> C1 = HelicalCoil(Do_total=32, H_total=22, pitch=5, Dt=2, Di=1.8) >>> C1.N, C1.tube_length, C1.surface_area (4.0, 377.5212621504738, 2372.0360474917497) >>> C1.inner_surface_area, C1.inlet_area, C1.inner_volume, C1.total_volume, C1.annulus_volume (2134.832442742575, 2.5446900494077327, 960.6745992341587, 1186.0180237458749, 225.3434245117162)
Attributes
tube_circumference (float) Circumference of the tube as measured though its center, not inner or outer edges; \(C = \pi D_o\), [m] tube_length (float) Length of tube used to make the helical coil; \(L = \sqrt{(\pi D_o\cdot N)^2 + H^2}\), [m] surface_area (float) Surface area of the outer surface of the helical coil; \(A_t = \pi D_t L\), [m^2] inner_surface_area (float) Surface area of the inner surface of the helical coil; calculated if Di is supplied; \(A_{inside} = \pi D_i L\), [m^2] inlet_area (float) Area of the inlet to the helical coil; calculated if Di is supplied; \(A_{inlet} = \frac{\pi}{4} D_i^2\), [m^2] inner_volume (float) Volume of the tube as would be filled by a fluid, useful for weight calculations; calculated if Di is supplied; \(V_{inside} = A_i L\), [m^3] annulus_area (float) Area of the annulus (wall of the pipe); calculated if Di is supplied; \(A_a = \frac{\pi}{4} (D_t^2  D_i^2)\), [m^2] annulus_volume (float) Volume of the annulus (wall of the pipe); calculated if Di is supplied, useful for weight calculations; \(V_a = A_a L\), [m^3] total_volume (float) Total volume occupied by the pipe and the fluid inside it; \(V = D_t L\), [m^3] helix_angle (float) Angle between the pitch and coil diameter; used in some calculations; \(\alpha = \arctan \left(\frac{p_t}{\pi D_o}\right)\), [] curvature (float) Coil curvature, useful in some calculations; \(\delta = \frac{D_t}{D_o[1 + 4\pi^2 \tan^2(\alpha)]}\), []

class
fluids.geometry.
PlateExchanger
(amplitude, wavelength, chevron_angle=45, width=None, length=None, thickness=None, d_port=None, plates=None)[source]¶ Bases:
object
Class representing a plate heat exchanger with sinusoidal ridges. All parameters are also attributes.
Parameters: amplitude : float
Half the height of the wave of the ridges, [m]
wavelength : float
Distance between the bottoms of two of the ridges (sometimes called pitch), [m]
chevron_angle : float or tuple(2), optional
Angle of the plate corrugations with respect to the vertical axis (the direction of flow if the plates were straight), between 0 and 90. Many plate exchangers use two alternating patterns; use a tuple of the two angles for that situation [degrees]
width : float, optional
Width of the plates in the heat exchanger, between the gaskets, [m]
length : float, optional
Length of the heat exchanger as measured from one port to the other, excluding the diameter of the ports themselves (little useful heat transfer happens there), [m]
thickness : float, optional
Thickness of the metal making up the plates, [m]
d_port : float, optional
The diameter of the ports in the plates, [m]
plates : int, optional
The number of plates in the heat exchanger, including the two not used for heat transfer at the beginning and end []
Notes
Only wavelength and amplitude are required as inputs to this function.
References
[R666690] Amalfi, Raffaele L., Farzad VakiliFarahani, and John R. Thome. “Flow Boiling and Frictional Pressure Gradients in Plate Heat Exchangers. Part 1: Review and Experimental Database.” International Journal of Refrigeration 61 (January 2016): 16684. doi:10.1016/j.ijrefrig.2015.07.010. Examples
>>> PlateExchanger(amplitude=5E4, wavelength=3.7E3, length=1.2, width=.3, ... d_port=.05, plates=51) <Plate heat exchanger, amplitude=0.0005 m, wavelength=0.0037 m, chevron_angles=45/45 degrees, area enhancement factor=1.16118620345, width=0.3 m, length=1.2 m, port diameter=0.05 m, heat transfer area=20.4833246289 m^2, 51 plates>
Attributes
chevron_angles (tuple(2)) The two specified angles (repeated value if only one specified), [degrees] chevron_angle (float) The averaged angle of the chevrons, [degrees] inclination_angle (float) 90  chevron_angle, used in many publications instead of chevron_angle, [degrees] plate_corrugation_aspect_ratio (float) The aspect ratio of the corrugations \(\gamma = \frac{4a}{\lambda}\), [] plate_enlargement_factor (float) The extra surface area multiplier as compared to a flat plate caused the corrugations, [] D_eq (float) Equivalent diameter of the channels, \(D_{eq} = 4a\) [m] D_hydraulic (float) Hydraulic diameter of the channels, \(D_{hyd} = \frac{4a}{\phi}\) [m] length_port (float) Port center to port center along the direction of flow, [m] A_plate_surface (float) The surface area of one plate in the heat exchanger, including the extra due to corrugations (excluding the bit between the ports), \(A_p = L\cdot W\cdot \phi\) [m^2] A_heat_transfer (float) The total surface area available for heat transfer in the exchanger, the multiple of A_plate_surface by the number of plates after removing the two on the edges, [m^2] A_channel_flow (float) The area for the fluid to flow in, \(W\cdot b\) [m^2] channels (int) The number of plates minus one, [] channels_per_fluid (int) Half the number of total channels, [] Methods

static
plate_enlargement_factor_analytical
(amplitude, wavelength)[source]¶ Calculates the enhancement factor of the sinusoidal waves of the plate heat exchanger. This is the multiplier for the flat plate area to obtain the actual area available for heat transfer. Obtained from the following integral:
\[ \begin{align}\begin{aligned}\phi = \frac{\text{Effective area}}{\text{Projected area}} = \frac{\int_0^\lambda\sqrt{1 + \left(\frac{\gamma\pi}{2}\right)^2 \cos^2\left(\frac{2\pi}{\lambda}x\right)}dx}{\lambda}\\\gamma = \frac{4a}{\lambda}\end{aligned}\end{align} \]The solution to the integral is:
\[\phi = \frac{2E\left(\frac{4a^2\pi^2}{\lambda^2}\right)}{\pi}\]where E is the complete elliptic integral of the second kind, calculated with SciPy.
Parameters: amplitude : float
Half the height of the wave of the ridges, [m]
wavelength : float
Distance between the bottoms of two of the ridges (sometimes called pitch), [m]
Returns: plate_enlargement_factor : float
The extra surface area multiplier as compared to a flat plate caused the corrugations, []
Notes
This is the exact analytical integral, obtained via Mathematica, Maple, and quite a bit of trial and error. It is confirmed via numerical integration. The expression normally given is an approximation as follows:
\[ \begin{align}\begin{aligned}\phi = \frac{1}{6}\left(1+\sqrt{1+A^2} + 4\sqrt{1+A^2/2}\right)\\A = \frac{2\pi a}{\lambda}\end{aligned}\end{align} \]Most plate heat exchangers approximate a sinusoidal geometry only.
Examples
>>> PlateExchanger.plate_enlargement_factor_analytical(amplitude=5E4, wavelength=3.7E3) 1.1611862034509677

plate_exchanger_identifier
¶ Method to create an identifying string in format ‘L’ + wavelength + ‘A’ + amplitude + ‘B’ + chevron anglechevron angle. Wavelength and amplitude are specified in units of mm and rounded to two decimal places.

static

fluids.geometry.
SA_partial_sphere
(D, h)[source]¶ Calculates surface area of a partial sphere according to [R667691]. If h is half of D, the shape is half a sphere. No bottom is considered in this function. Valid inputs are positive values of D and h, with h always smaller or equal to D.
\[ \begin{align}\begin{aligned}a = \sqrt{h(2r  h)}\\A = \pi(a^2 + h^2)\end{aligned}\end{align} \]Parameters: D : float
Diameter of the sphere, [m]
h : float
Height, as measured from the cap to where the sphere is cut off [m]
Returns: SA : float
Surface area [m^2]
References
[R667691] (1, 2) Weisstein, Eric W. “Spherical Cap.” Text. Accessed December 22, 2015. http://mathworld.wolfram.com/SphericalCap.html. Examples
>>> SA_partial_sphere(1., 0.7) 2.199114857512855

fluids.geometry.
V_partial_sphere
(D, h)[source]¶ Calculates volume of a partial sphere according to [R668692]. If h is half of D, the shape is half a sphere. No bottom is considered in this function. Valid inputs are positive values of D and h, with h always smaller or equal to D.
\[ \begin{align}\begin{aligned}a = \sqrt{h(2r  h)}\\V = 1/6 \pi h(3a^2 + h^2)\end{aligned}\end{align} \]Parameters: D : float
Diameter of the sphere, [m]
h : float
Height, as measured up to where the sphere is cut off, [m]
Returns: V : float
Volume [m^3]
References
[R668692] (1, 2) Weisstein, Eric W. “Spherical Cap.” Text. Accessed December 22, 2015. http://mathworld.wolfram.com/SphericalCap.html. Examples
>>> V_partial_sphere(1., 0.7) 0.4105014400690663

fluids.geometry.
V_horiz_conical
(D, L, a, h, headonly=False)[source]¶ Calculates volume of a tank with conical ends, according to [R669693].
\[ \begin{align}\begin{aligned}\begin{split}V_f = A_fL + \frac{2aR^2}{3}K, \;\;0 \le h < R\\\end{split}\\\begin{split}V_f = A_fL + \frac{2aR^2}{3}\pi/2,\;\; h = R\\\end{split}\\V_f = A_fL + \frac{2aR^2}{3}(\piK), \;\; R< h \le 2R\\K = \cos^{1} M + M^3\cosh^{1} \frac{1}{M}  2M\sqrt{1  M^2}\\M = \left\frac{Rh}{R}\right\\Af = R^2\cos^{1}\frac{Rh}{R}  (Rh)\sqrt{2Rh  h^2}\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
L : float
Length of the main cylindrical section, [m]
a : float
Distance the cone head extends on one side, [m]
h : float
Height, as measured up to where the fluid ends, [m]
headonly : bool, optional
Function returns only the volume of a single head side if True
Returns: V : float
Volume [m^3]
References
[R669693] (1, 2, 3) Jones, D. “Calculating Tank Volume.” Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF Examples
Matching example from [R669693], with inputs in inches and volume in gallons.
>>> V_horiz_conical(D=108., L=156., a=42., h=36)/231 2041.1923581273443

fluids.geometry.
V_horiz_ellipsoidal
(D, L, a, h, headonly=False)[source]¶ Calculates volume of a tank with ellipsoidal ends, according to [R670694].
\[ \begin{align}\begin{aligned}V_f = A_fL + \pi a h^2\left(1  \frac{h}{3R}\right)\\Af = R^2\cos^{1}\frac{Rh}{R}  (Rh)\sqrt{2Rh  h^2}\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
L : float
Length of the main cylindrical section, [m]
a : float
Distance the ellipsoidal head extends on one side, [m]
h : float
Height, as measured up to where the fluid ends, [m]
headonly : bool, optional
Function returns only the volume of a single head side if True
Returns: V : float
Volume [m^3]
References
[R670694] (1, 2, 3) Jones, D. “Calculating Tank Volume.” Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF Examples
Matching example from [R670694], with inputs in inches and volume in gallons.
>>> V_horiz_ellipsoidal(D=108, L=156, a=42, h=36)/231. 2380.9565415578145

fluids.geometry.
V_horiz_guppy
(D, L, a, h, headonly=False)[source]¶ Calculates volume of a tank with guppy heads, according to [R671695].
\[ \begin{align}\begin{aligned}V_f = A_fL + \frac{2aR^2}{3}\cos^{1}\left(1  \frac{h}{R}\right) +\frac{2a}{9R}\sqrt{2Rh  h^2}(2h3R)(h+R)\\Af = R^2\cos^{1}\frac{Rh}{R}  (Rh)\sqrt{2Rh  h^2}\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
L : float
Length of the main cylindrical section, [m]
a : float
Distance the guppy head extends on one side, [m]
h : float
Height, as measured up to where the fluid ends, [m]
headonly : bool, optional
Function returns only the volume of a single head side if True
Returns: V : float
Volume [m^3]
References
[R671695] (1, 2, 3) Jones, D. “Calculating Tank Volume.” Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF Examples
Matching example from [R671695], with inputs in inches and volume in gallons.
>>> V_horiz_guppy(D=108., L=156., a=42., h=36)/231. 1931.7208029476762

fluids.geometry.
V_horiz_spherical
(D, L, a, h, headonly=False)[source]¶ Calculates volume of a tank with spherical heads, according to [R672696].
\[ \begin{align}\begin{aligned}V_f = A_fL + \frac{\pi a}{6}(3R^2 + a^2),\;\; h = R, a\le R\\V_f = A_fL + \frac{\pi a}{3}(3R^2 + a^2),\;\; h = D, a\le R\\V_f = A_fL + \pi a h^2\left(1  \frac{h}{3R}\right),\;\; h = 0, \text{ or } a = 0, R, R\\V_f = A_fL + \frac{a}{a}\left\{\frac{2r^3}{3}\left[\cos^{1} \frac{R^2  rw}{R(wr)} + \cos^{1}\frac{R^2 + rw}{R(w+r)}  \frac{z}{r}\left(2 + \left(\frac{R}{r}\right)^2\right) \cos^{1}\frac{w}{R}\right]  2\left(wr^2  \frac{w^3}{3}\right) \tan^{1}\frac{y}{z} + \frac{4wyz}{3}\right\} ,\;\; h \ne R, D; a \ne 0, R, R, a \ge 0.01D\\V_f = A_fL + \frac{a}{a}\left[2\int_w^R(r^2  x^2)\tan^{1} \sqrt{\frac{R^2x^2}{r^2R^2}}dx  A_f z\right] ,\;\; h \ne R, D; a \ne 0, R, R, a < 0.01D\\Af = R^2\cos^{1}\frac{Rh}{R}  (Rh)\sqrt{2Rh  h^2}\\r = \frac{a^2 + R^2}{2a}\\w = R  h\\y = \sqrt{2Rhh^2}\\z = \sqrt{r^2  R^2}\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
L : float
Length of the main cylindrical section, [m]
a : float
Distance the spherical head extends on one side, [m]
h : float
Height, as measured up to where the fluid ends, [m]
headonly : bool, optional
Function returns only the volume of a single head side if True
Returns: V : float
Volume [m^3]
References
[R672696] (1, 2, 3) Jones, D. “Calculating Tank Volume.” Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF Examples
Matching example from [R672696], with inputs in inches and volume in gallons.
>>> V_horiz_spherical(D=108., L=156., a=42., h=36)/231. 2303.9615116986183

fluids.geometry.
V_horiz_torispherical
(D, L, f, k, h, headonly=False)[source]¶ Calculates volume of a tank with torispherical heads, according to [R673697].
\[ \begin{align}\begin{aligned}\begin{split}V_f = A_fL + 2V_1, \;\; 0 \le h \le h_1\\ V_f = A_fL + 2(V_{1,max} + V_2 + V_3), \;\; h_1 < h < h_2\\ V_f = A_fL + 2[2V_{1,max}  V_1(h=Dh) + V_{2,max} + V_{3,max}] , \;\; h_2 \le h \le D\end{split}\\V_1 = \int_0^{\sqrt{2kDh  h^2}} \left[n^2\sin^{1}\frac{\sqrt {n^2w^2}}{n}  w\sqrt{n^2w^2}\right]dx\\V_2 = \int_0^{kD\cos\alpha}\left[n^2\left(\cos^{1}\frac{w}{n}  \cos^{1}\frac{g}{n}\right)  w\sqrt{n^2  w^2} + g\sqrt{n^2  g^2}\right]dx\\V_3 = \int_w^g(r^2  x^2)\tan^{1}\frac{\sqrt{g^2  x^2}}{z}dx  \frac{z}{2}\left(g^2\cos^{1}\frac{w}{g}  w\sqrt{2g(hh_1)  (hh_1)^2}\right)\\V_{1,max} = v_1(h=h_1)\\v_{2,max} = v_2(h=h_2)\\v_{3,max} = \frac{\pi a_1}{6}(3g^2 + a_1^2)\\a_1 = fD(1\cos\alpha)\\\alpha = \sin^{1}\frac{12k}{2(fk)}\\n = R  kD + \sqrt{k^2D^2x^2}\\g = r\sin\alpha\\r = fD\\h_2 = D  h_1\\w = R  h\\z = \sqrt{r^2 g^2}\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
L : float
Length of the main cylindrical section, [m]
f : float
Dishradius parameter; fD = dish radius [1/m]
k : float
knuckleradius parameter ; kD = knuckle radius [1/m]
h : float
Height, as measured up to where the fluid ends, [m]
headonly : bool, optional
Function returns only the volume of a single head side if True
Returns: V : float
Volume [m^3]
References
[R673697] (1, 2, 3) Jones, D. “Calculating Tank Volume.” Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF Examples
Matching example from [R673697], with inputs in inches and volume in gallons.
>>> V_horiz_torispherical(D=108., L=156., f=1., k=0.06, h=36)/231. 2028.626670842139

fluids.geometry.
V_vertical_conical
(D, a, h)[source]¶ Calculates volume of a vertical tank with a convex conical bottom, according to [R674698]. No provision for the top of the tank is made here.
\[ \begin{align}\begin{aligned}V_f = \frac{\pi}{4}\left(\frac{Dh}{a}\right)^2\left(\frac{h}{3}\right),\; h < a\\V_f = \frac{\pi D^2}{4}\left(h  \frac{2a}{3}\right),\; h\ge a\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
a : float
Distance the cone head extends under the main cylinder, [m]
h : float
Height, as measured up to where the fluid ends, [m]
Returns: V : float
Volume [m^3]
References
[R674698] (1, 2, 3) Jones, D. “Calculating Tank Volume.” Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF Examples
Matching example from [R674698], with inputs in inches and volume in gallons.
>>> V_vertical_conical(132., 33., 24)/231. 250.67461381371024

fluids.geometry.
V_vertical_ellipsoidal
(D, a, h)[source]¶ Calculates volume of a vertical tank with a convex ellipsoidal bottom, according to [R675699]. No provision for the top of the tank is made here.
\[ \begin{align}\begin{aligned}V_f = \frac{\pi}{4}\left(\frac{Dh}{a}\right)^2 \left(a  \frac{h}{3}\right),\; h < a\\V_f = \frac{\pi D^2}{4}\left(h  \frac{a}{3}\right),\; h \ge a\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
a : float
Distance the ellipsoid head extends under the main cylinder, [m]
h : float
Height, as measured up to where the fluid ends, [m]
Returns: V : float
Volume [m^3]
References
[R675699] (1, 2, 3) Jones, D. “Calculating Tank Volume.” Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF Examples
Matching example from [R675699], with inputs in inches and volume in gallons.
>>> V_vertical_ellipsoidal(132., 33., 24)/231. 783.3581681678445

fluids.geometry.
V_vertical_spherical
(D, a, h)[source]¶ Calculates volume of a vertical tank with a convex spherical bottom, according to [R676700]. No provision for the top of the tank is made here.
\[ \begin{align}\begin{aligned}V_f = \frac{\pi h^2}{4}\left(2a + \frac{D^2}{2a}  \frac{4h}{3}\right),\; h < a\\V_f = \frac{\pi}{4}\left(\frac{2a^3}{3}  \frac{aD^2}{2} + hD^2\right),\; h\ge a\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
a : float
Distance the spherical head extends under the main cylinder, [m]
h : float
Height, as measured up to where the fluid ends, [m]
Returns: V : float
Volume [m^3]
References
[R676700] (1, 2, 3) Jones, D. “Calculating Tank Volume.” Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF Examples
Matching example from [R676700], with inputs in inches and volume in gallons.
>>> V_vertical_spherical(132., 33., 24)/231. 583.6018352850442

fluids.geometry.
V_vertical_torispherical
(D, f, k, h)[source]¶ Calculates volume of a vertical tank with a convex torispherical bottom, according to [R677701]. No provision for the top of the tank is made here.
\[ \begin{align}\begin{aligned}V_f = \frac{\pi h^2}{4}\left(2a_1 + \frac{D_1^2}{2a_1}  \frac{4h}{3}\right),\; 0 \le h \le a_1\\V_f = \frac{\pi}{4}\left(\frac{2a_1^3}{3} + \frac{a_1D_1^2}{2}\right) +\pi u\left[\left(\frac{D}{2}kD\right)^2 +s\right] + \frac{\pi tu^2}{2}  \frac{\pi u^3}{3} + \pi D(12k)\left[ \frac{2ut}{4}\sqrt{s+tuu^2} + \frac{t\sqrt{s}}{4} + \frac{k^2D^2}{2}\left(\cos^{1}\frac{t2u}{2kD}\alpha\right)\right] ,\; a_1 < h \le a_1 + a_2\\V_f = \frac{\pi}{4}\left(\frac{2a_1^3}{3} + \frac{a_1D_1^2}{2}\right) +\frac{\pi t}{2}\left[\left(\frac{D}{2}kD\right)^2 +s\right] +\frac{\pi t^3}{12} + \pi D(12k)\left[\frac{t\sqrt{s}}{4} + \frac{k^2D^2}{2}\sin^{1}(\cos\alpha)\right] + \frac{\pi D^2}{4}[h(a_1+a_2)] ,\; a_1 + a_2 < h\\\alpha = \sin^{1}\frac{12k}{2(fk)}\\a_1 = fD(1\cos\alpha)\\a_2 = kD\cos\alpha\\D_1 = 2fD\sin\alpha\\s = (kD\sin\alpha)^2\\t = 2a_2\\u = h  fD(1\cos\alpha)\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
f : float
Dishradius parameter; fD = dish radius [1/m]
k : float
knuckleradius parameter ; kD = knuckle radius [1/m]
h : float
Height, as measured up to where the fluid ends, [m]
Returns: V : float
Volume [m^3]
References
[R677701] (1, 2, 3) Jones, D. “Calculating Tank Volume.” Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF Examples
Matching example from [R677701], with inputs in inches and volume in gallons.
>>> V_vertical_torispherical(D=132., f=1.0, k=0.06, h=24)/231. 904.0688283793511

fluids.geometry.
V_vertical_conical_concave
(D, a, h)[source]¶ Calculates volume of a vertical tank with a concave conical bottom, according to [R678702]. No provision for the top of the tank is made here.
\[ \begin{align}\begin{aligned}V = \frac{\pi D^2}{12} \left(3h + a  \frac{(a+h)^3}{a^2}\right) ,\;\; 0 \le h < a\\V = \frac{\pi D^2}{12} (3h + a ),\;\; h \ge a\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
a : float
Negative distance the cone head extends inside the main cylinder, [m]
h : float
Height, as measured up to where the fluid ends, [m]
Returns: V : float
Volume [m^3]
References
[R678702] (1, 2, 3) Jones, D. “Compute Fluid Volumes in Vertical Tanks.” Chemical Processing. December 18, 2003. http://www.chemicalprocessing.com/articles/2003/193/ Examples
Matching example from [R678702], with inputs in inches and volume in gallons.
>>> V_vertical_conical_concave(D=113., a=33, h=15)/231 251.15825565795188

fluids.geometry.
V_vertical_ellipsoidal_concave
(D, a, h)[source]¶ Calculates volume of a vertical tank with a concave ellipsoidal bottom, according to [R679703]. No provision for the top of the tank is made here.
\[ \begin{align}\begin{aligned}V = \frac{\pi D^2}{12} \left(3h + 2a  \frac{(a+h)^2(2ah)}{a^2}\right) ,\;\; 0 \le h < a\\V = \frac{\pi D^2}{12} (3h + 2a ),\;\; h \ge a\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
a : float
Negative distance the eppilsoid head extends inside the main cylinder, [m]
h : float
Height, as measured up to where the fluid ends, [m]
Returns: V : float
Volume [m^3]
References
[R679703] (1, 2, 3) Jones, D. “Compute Fluid Volumes in Vertical Tanks.” Chemical Processing. December 18, 2003. http://www.chemicalprocessing.com/articles/2003/193/ Examples
Matching example from [R679703], with inputs in inches and volume in gallons.
>>> V_vertical_ellipsoidal_concave(D=113., a=33, h=15)/231 44.84968851034856

fluids.geometry.
V_vertical_spherical_concave
(D, a, h)[source]¶ Calculates volume of a vertical tank with a concave spherical bottom, according to [R680704]. No provision for the top of the tank is made here.
\[ \begin{align}\begin{aligned}V = \frac{\pi}{12}\left[3D^2h + \frac{a}{2}(3D^2 + 4a^2) + (a+h)^3 \left(4  \frac{3D^2 + 12a^2}{2a(a+h)}\right)\right],\;\; 0 \le h < a\\V = \frac{\pi}{12}\left[3D^2h + \frac{a}{2}(3D^2 + 4a^2) \right] ,\;\; h \ge a\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
a : float
Negative distance the spherical head extends inside the main cylinder, [m]
h : float
Height, as measured up to where the fluid ends, [m]
Returns: V : float
Volume [m^3]
References
[R680704] (1, 2, 3) Jones, D. “Compute Fluid Volumes in Vertical Tanks.” Chemical Processing. December 18, 2003. http://www.chemicalprocessing.com/articles/2003/193/ Examples
Matching example from [R680704], with inputs in inches and volume in gallons.
>>> V_vertical_spherical_concave(D=113., a=33, h=15)/231 112.81405437348528

fluids.geometry.
V_vertical_torispherical_concave
(D, f, k, h)[source]¶ Calculates volume of a vertical tank with a concave torispherical bottom, according to [R681705]. No provision for the top of the tank is made here.
\[ \begin{align}\begin{aligned}V = \frac{\pi D^2 h}{4}  v_1(h=a_1+a_2) + v_1(h=a_1 + a_2 h),\; 0 \le h < a_2\\V = \frac{\pi D^2 h}{4}  v_1(h=a_1+a_2) + v_2(h=a_1 + a_2 h),\; a_2 \le h < a_1 + a_2\\V = \frac{\pi D^2 h}{4}  v_1(h=a_1+a_2) + 0,\; h \ge a_1 + a_2\\v_1 = \frac{\pi}{4}\left(\frac{2a_1^3}{3} + \frac{a_1D_1^2}{2}\right) +\pi u\left[\left(\frac{D}{2}kD\right)^2 +s\right] + \frac{\pi tu^2}{2}  \frac{\pi u^3}{3} + \pi D(12k)\left[ \frac{2ut}{4}\sqrt{s+tuu^2} + \frac{t\sqrt{s}}{4} + \frac{k^2D^2}{2}\left(\cos^{1}\frac{t2u}{2kD}\alpha\right)\right]\\v_2 = \frac{\pi h^2}{4}\left(2a_1 + \frac{D_1^2}{2a_1}  \frac{4h}{3}\right)\\\alpha = \sin^{1}\frac{12k}{2(fk)}\\a_1 = fD(1\cos\alpha)\\a_2 = kD\cos\alpha\\D_1 = 2fD\sin\alpha\\s = (kD\sin\alpha)^2\\t = 2a_2\\u = h  fD(1\cos\alpha)\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
f : float
Dishradius parameter; fD = dish radius [1/m]
k : float
knuckleradius parameter ; kD = knuckle radius [1/m]
h : float
Height, as measured up to where the fluid ends, [m]
Returns: V : float
Volume [m^3]
References
[R681705] (1, 2, 3) Jones, D. “Compute Fluid Volumes in Vertical Tanks.” Chemical Processing. December 18, 2003. http://www.chemicalprocessing.com/articles/2003/193/ Examples
Matching example from [R681705], with inputs in inches and volume in gallons.
>>> V_vertical_torispherical_concave(D=113., f=0.71, k=0.081, h=15)/231 103.88569287163769

fluids.geometry.
a_torispherical
(D, f, k)[source]¶ Calculates depth of a torispherical head according to [R682706].
\[ \begin{align}\begin{aligned}a = a_1 + a_2\\\alpha = \sin^{1}\frac{12k}{2(fk)}\\a_1 = fD(1\cos\alpha)\\a_2 = kD\cos\alpha\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
f : float
Dishradius parameter; fD = dish radius [1/m]
k : float
knuckleradius parameter ; kD = knuckle radius [1/m]
Returns: a : float
Depth of head [m]
References
[R682706] (1, 2, 3) Jones, D. “Calculating Tank Volume.” Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF Examples
Example from [R682706].
>>> a_torispherical(D=96., f=0.9, k=0.2) 25.684268924767125

fluids.geometry.
SA_ellipsoidal_head
(D, a)[source]¶ Calculates the surface area of an ellipsoidal head according to [R683707]. Formula below is for the full shape, the result of which is halved. The formula also does not support D being larger than a; this is ensured by simply swapping the variables if necessary, as geometrically the result is the same. In the equations
\[ \begin{align}\begin{aligned}SA = 2\pi a^2 + \frac{\pi c^2}{e_1}\ln\left(\frac{1+e_1}{1e_1}\right)\\e_1 = \sqrt{1  \frac{c^2}{a^2}}\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
a : float
Distance the ellipsoidal head extends, [m]
Returns: SA : float
Surface area [m^2]
References
[R683707] (1, 2) Weisstein, Eric W. “Spheroid.” Text. Accessed March 14, 2016. http://mathworld.wolfram.com/Spheroid.html. Examples
Spherical case
>>> SA_ellipsoidal_head(2, 1) 6.283185307179586

fluids.geometry.
SA_conical_head
(D, a)[source]¶ Calculates the surface area of a conical head according to [R684708].
\[SA = \frac{\pi D}{2} \sqrt{a^2 + \left(\frac{D}{2}\right)^2}\]Parameters: D : float
Diameter of the main cylindrical section, [m]
a : float
Distance the conical head extends, [m]
Returns: SA : float
Surface area [m^2]
References
[R684708] (1, 2) Weisstein, Eric W. “Cone.” Text. Accessed March 14, 2016. http://mathworld.wolfram.com/Cone.html. Examples
>>> SA_conical_head(2, 1) 4.442882938158366

fluids.geometry.
SA_guppy_head
(D, a)[source]¶ Calculates the surface area of a guppy head according to [R685709]. Some work was involved in combining formulas for the ellipse of the head, and the conic section on the sides.
\[SA = \frac{\pi D}{4}\sqrt{D^2 + a^2} + \frac{\pi D}{2}a\]Parameters: D : float
Diameter of the main cylindrical section, [m]
a : float
Distance the conical head extends, [m]
Returns: SA : float
Surface area [m^2]
References
[R685709] (1, 2) Weisstein, Eric W. “Cone.” Text. Accessed March 14, 2016. http://mathworld.wolfram.com/Cone.html. Examples
>>> SA_guppy_head(2, 1) 6.654000019110157

fluids.geometry.
SA_torispheroidal
(D, fd, fk)[source]¶ Calculates surface area of a torispherical head according to [R686710]. Somewhat involved. Equations are adapted to be used for a full head.
\[ \begin{align}\begin{aligned}SA = S_1 + S_2\\S_1 = 2\pi D^2 f_d \alpha\\S_2 = 2\pi D^2 f_k\left(\alpha  \alpha_1 + (0.5  f_k)\left(\sin^{1} \left(\frac{\alpha\alpha_2}{f_k}\right)  \sin^{1}\left(\frac{ \alpha_1\alpha_2}{f_k}\right)\right)\right)\\\alpha_1 = f_d\left(1  \sqrt{1  \left(\frac{0.5  f_k}{f_df_k} \right)^2}\right)\\\alpha_2 = f_d  \sqrt{f_d^2  2f_d f_k + f_k  0.25}\\\alpha = \frac{a}{D_i}\end{aligned}\end{align} \]Parameters: D : float
Diameter of the main cylindrical section, [m]
fd : float
Dishradius parameter = f; fD = dish radius [1/m]
fk : float
knuckleradius parameter = k; kD = knuckle radius [1/m]
Returns: SA : float
Surface area [m^2]
References
[R686710] (1, 2, 3) Honeywell. “Calculate Surface Areas and Crosssectional Areas in Vessels with Dished Heads”. https://www.honeywellprocess.com/library/marketing/whitepapers/WPVesselsWithDishedHeadsUniSimDesign.pdf Whitepaper. 2014. Examples
Example from [R686710].
>>> SA_torispheroidal(D=2.54, fd=1.039370079, fk=0.062362205) 6.00394283477063

fluids.geometry.
V_from_h
(h, D, L, horizontal=True, sideA=None, sideB=None, sideA_a=0, sideB_a=0, sideA_f=None, sideA_k=None, sideB_f=None, sideB_k=None)[source]¶ Calculates partially full volume of a vertical or horizontal tank with different head types according to [R687711].
Parameters: h : float
Height of the liquid in the tank, [m]
D : float
Diameter of the cylindrical section of the tank, [m]
L : float
Length of the main cylindrical section of the tank, [m]
horizontal : bool, optional
Whether or not the tank is a horizontal or vertical tank
sideA : string, optional
The left (or bottom for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].
sideB : string, optional
The right (or top for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].
sideA_a : float, optional
The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m]
sideB_a : float, optional
The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m]
sideA_f : float, optional
Dishradius parameter for side A; fD = dish radius [1/m]
sideA_k : float, optional
knuckleradius parameter for side A; kD = knuckle radius [1/m]
sideB_f : float, optional
Dishradius parameter for side B; fD = dish radius [1/m]
sideB_k : float, optional
knuckleradius parameter for side B; kD = knuckle radius [1/m]
Returns: V : float
Volume up to h [m^3]
References
[R687711] (1, 2) Jones, D. “Compute Fluid Volumes in Vertical Tanks.” Chemical Processing. December 18, 2003. http://www.chemicalprocessing.com/articles/2003/193/ Examples
>>> V_from_h(h=7, D=1.5, L=5., horizontal=False, sideA='conical', ... sideB='conical', sideA_a=2., sideB_a=1.) 10.013826583317465

fluids.geometry.
SA_tank
(D, L, sideA=None, sideB=None, sideA_a=0, sideB_a=0, sideA_f=None, sideA_k=None, sideB_f=None, sideB_k=None, full_output=False)[source]¶ Calculates the surface are of a cylindrical tank with optional heads. In the degenerate case of being provided with only D and L, provides the surface area of a cylinder.
Parameters: D : float
Diameter of the cylindrical section of the tank, [m]
L : float
Length of the main cylindrical section of the tank, [m]
sideA : string, optional
The left (or bottom for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].
sideB : string, optional
The right (or top for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].
sideA_a : float, optional
The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m]
sideB_a : float, optional
The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m]
sideA_f : float, optional
Dishradius parameter for side A; fD = dish radius [1/m]
sideA_k : float, optional
knuckleradius parameter for side A; kD = knuckle radius [1/m]
sideB_f : float, optional
Dishradius parameter for side B; fD = dish radius [1/m]
sideB_k : float, optional
knuckleradius parameter for side B; kD = knuckle radius [1/m]
Returns: SA : float
Surface area of the tank [m^2]
areas : tuple, only returned if full_output == True
(sideA_SA, sideB_SA, lateral_SA)
Other Parameters: full_output : bool, optional
Returns a tuple of (sideA_SA, sideB_SA, lateral_SA) if True
Examples
Cylinder, Spheroid, Long Cones, and spheres. All checked.
>>> SA_tank(D=2, L=2) 18.84955592153876 >>> SA_tank(D=1., L=0, sideA='ellipsoidal', sideA_a=2, sideB='ellipsoidal', ... sideB_a=2) 28.480278854014387 >>> SA_tank(D=1., L=5, sideA='conical', sideA_a=2, sideB='conical', ... sideB_a=2) 22.18452243965656 >>> SA_tank(D=1., L=5, sideA='spherical', sideA_a=0.5, sideB='spherical', ... sideB_a=0.5) 18.84955592153876

fluids.geometry.
sphericity
(A, V)[source]¶ Returns the sphericity of a particle of surface area A and volume V. Sphericity is the ratio of the surface area of a sphere with the same volume as the particle (equivalent diameter) to the actual surface area of the particle.
\[\Psi = \frac{\text{A of sphere with } V_p } {{A}_p} = \frac{\pi^{\frac{1}{3}}(6V_p)^{\frac{2}{3}}}{A_p}\]Parameters: A : float
Surface area of particle, [m^2]
V : float
Volume of particle, [m^3]
Returns: Psi : float
Sphericity []
Notes
All nonspherical particles have spericities less than 1 but greater than 0. Many common geometrical shapes have their results calculated exactly in [R689712].
References
[R688712] Rhodes, Martin J., ed. Introduction to Particle Technology. 2E. Chichester, England ; Hoboken, NJ: Wiley, 2008. [R689712] (1, 2) “Sphericity.” Wikipedia, March 8, 2017. https://en.wikipedia.org/w/index.php?title=Sphericity&oldid=769183043 Examples
>>> sphericity(10., 2.) 0.767663317071005
For a cube of side length a=3, the surface area is 6*a^2=54 and volume a^3=27. Its sphericity is then:
>>> sphericity(A=54, V=27) 0.8059959770082346

fluids.geometry.
aspect_ratio
(Dmin, Dmax)[source]¶ Returns the aspect ratio of a shape with minimum and maximum dimension, Dmin and Dmax.
\[A_R = \frac{D_{min}}{D_{max}}\]Parameters: Dmin : float
Minimum dimension, [m]
Dmax : float
Maximum dimension, [m]
Returns: a_r : float
Aspect ratio []
Examples
>>> aspect_ratio(.2, 2) 0.1

fluids.geometry.
circularity
(A, P)[source]¶ Returns the circularity of a shape with area A and perimeter P.
\[f_{circ} = \frac {4 \pi A} {P^2}\]Defined to be 1 for a circle. Used to characterize particles. Any noncircular shape must have a circularity less than one.
Parameters: A : float
Area of the shape, [m^2]
P : float
Perimeter of the shape, [m]
Returns: f_circ : float
Circularity of the shape []
Examples
Square, side length = 2 (all squares are the same):
>>> circularity(A=(2*2), P=4*2) 0.7853981633974483
Rectangle, one side length = 1, second side length = 100
>>> D1 = 1 >>> D2 = 100 >>> A = D1*D2 >>> P = 2*D1 + 2*D2 >>> circularity(A, P) 0.030796908671598795

fluids.geometry.
A_cylinder
(D, L)[source]¶ Returns the surface area of a cylinder.
\[A = \pi D L + 2\cdot \frac{\pi D^2}{4}\]Parameters: D : float
Diameter of the cylinder, [m]
L : float
Length of the cylinder, [m]
Returns: A : float
Surface area [m^2]
Examples
>>> A_cylinder(0.01, .1) 0.0032986722862692833

fluids.geometry.
V_cylinder
(D, L)[source]¶ Returns the volume of a cylinder.
\[V = \frac{\pi D^2}{4}L\]Parameters: D : float
Diameter of the cylinder, [m]
L : float
Length of the cylinder, [m]
Returns: V : float
Volume [m^3]
Examples
>>> V_cylinder(0.01, .1) 7.853981633974484e06

fluids.geometry.
A_hollow_cylinder
(Di, Do, L)[source]¶ Returns the surface area of a hollow cylinder.
\[A = \pi D_o L + \pi D_i L + 2\cdot \frac{\pi D_o^2}{4}  2\cdot \frac{\pi D_i^2}{4}\]Parameters: Di : float
Diameter of the hollow in the cylinder, [m]
Do : float
Diameter of the exterior of the cylinder, [m]
L : float
Length of the cylinder, [m]
Returns: A : float
Surface area [m^2]
Examples
>>> A_hollow_cylinder(0.005, 0.01, 0.1) 0.004830198704894308

fluids.geometry.
V_hollow_cylinder
(Di, Do, L)[source]¶ Returns the volume of a hollow cylinder.
\[V = \frac{\pi D_o^2}{4}L  L\frac{\pi D_i^2}{4}\]Parameters: Di : float
Diameter of the hollow in the cylinder, [m]
Do : float
Diameter of the exterior of the cylinder, [m]
L : float
Length of the cylinder, [m]
Returns: V : float
Volume [m^3]
Examples
>>> V_hollow_cylinder(0.005, 0.01, 0.1) 5.890486225480862e06

fluids.geometry.
A_multiple_hole_cylinder
(Do, L, holes)[source]¶ Returns the surface area of a cylinder with multiple holes. Calculation will naively return a negative value or other impossible result if the number of cylinders added is physically impossible. Holes may be of different shapes, but must be perpendicular to the axis of the cylinder.
\[A = \pi D_o L + 2\cdot \frac{\pi D_o^2}{4} + \sum_{i}^n \left( \pi D_i L  2\cdot \frac{\pi D_i^2}{4}\right)\]Parameters: Do : float
Diameter of the exterior of the cylinder, [m]
L : float
Length of the cylinder, [m]
holes : list
List of tuples containing (diameter, count) pairs of descriptions for each of the holes sizes.
Returns: A : float
Surface area [m^2]
Examples
>>> A_multiple_hole_cylinder(0.01, 0.1, [(0.005, 1)]) 0.004830198704894308

fluids.geometry.
V_multiple_hole_cylinder
(Do, L, holes)[source]¶ Returns the solid volume of a cylinder with multiple cylindrical holes. Calculation will naively return a negative value or other impossible result if the number of cylinders added is physically impossible.
\[V = \frac{\pi D_o^2}{4}L  L\frac{\pi D_i^2}{4}\]Parameters: Do : float
Diameter of the exterior of the cylinder, [m]
L : float
Length of the cylinder, [m]
holes : list
List of tuples containing (diameter, count) pairs of descriptions for each of the holes sizes.
Returns: V : float
Volume [m^3]
Examples
>>> V_multiple_hole_cylinder(0.01, 0.1, [(0.005, 1)]) 5.890486225480862e06