Source code for fluids.fittings

r"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017, 2018, 2019, 2020 Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

This module contains correlations for the loss coefficient of various types
of pipe fittings. Whether you are designing a network or modeling a single
element, the correlations here cover most cases.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.

.. contents:: :local:

Entrances
---------
.. autofunction:: entrance_sharp
.. autofunction:: entrance_distance
.. autofunction:: entrance_angled
.. autofunction:: entrance_rounded
.. autofunction:: entrance_beveled
.. autofunction:: entrance_beveled_orifice
.. autofunction:: entrance_distance_45_Miller

Exits
-----
.. autofunction:: exit_normal

Bends
-----
.. autofunction:: bend_rounded
.. autofunction:: bend_rounded_Miller
.. autofunction:: bend_rounded_Crane
.. autofunction:: bend_miter
.. autofunction:: bend_miter_Miller
.. autofunction:: helix
.. autofunction:: spiral

Contractions/Reducers
---------------------
.. autofunction:: contraction_sharp
.. autofunction:: contraction_round
.. autofunction:: contraction_round_Miller
.. autofunction:: contraction_conical
.. autofunction:: contraction_conical_Crane
.. autofunction:: contraction_beveled

Expansions/Diffusers
--------------------
.. autofunction:: diffuser_sharp
.. autofunction:: diffuser_conical
.. autofunction:: diffuser_conical_staged
.. autofunction:: diffuser_curved
.. autofunction:: diffuser_pipe_reducer

Tees
----
.. autofunction:: K_branch_converging_Crane
.. autofunction:: K_run_converging_Crane
.. autofunction:: K_branch_diverging_Crane
.. autofunction:: K_run_diverging_Crane

Valves
------
.. autofunction:: K_gate_valve_Crane
.. autofunction:: K_angle_valve_Crane
.. autofunction:: K_globe_valve_Crane
.. autofunction:: K_swing_check_valve_Crane
.. autofunction:: K_lift_check_valve_Crane
.. autofunction:: K_tilting_disk_check_valve_Crane
.. autofunction:: K_globe_stop_check_valve_Crane
.. autofunction:: K_angle_stop_check_valve_Crane
.. autofunction:: K_ball_valve_Crane
.. autofunction:: K_diaphragm_valve_Crane
.. autofunction:: K_foot_valve_Crane
.. autofunction:: K_butterfly_valve_Crane
.. autofunction:: K_plug_valve_Crane

Hooper 2K fittings
------------------
.. autofunction:: Hooper2K
.. autodata:: Hooper

Darby 3K fittings
------------------
.. autofunction:: Darby3K
.. autodata:: Darby

Loss Coefficient Converters
---------------------------
.. autofunction:: Cv_to_K
.. autofunction:: Kv_to_K
.. autofunction:: K_to_Cv
.. autofunction:: K_to_Kv
.. autofunction:: Cv_to_Kv
.. autofunction:: Kv_to_Cv

Miscellaneous
-------------
.. autofunction:: v_lift_valve_Crane

Sources
-------

The main sources for these correlations are as follows [100]_ [101]_ [102]_ [103]_ [104]_:

.. [100] Crane Co. TP 410 Flow of Fluids Through Valves, Fittings, and Pipe. Crane,
   2009.
.. [101] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical
   and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012.
.. [102] Miller, Donald S. Internal Flow Systems: Design and Performance
   Prediction. Gulf Publishing Company, 1990.
.. [103] Idel`chik, I. E. Handbook of Hydraulic Resistance: Coefficients of
   Local Resistance and of Friction (Spravochnik Po Gidravlicheskim
   Soprotivleniyam, Koeffitsienty Mestnykh Soprotivlenii i Soprotivleniya
   Treniya). National technical information Service, 1966.
.. [104] Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.:
   Van Nostrand Reinhold Co., 1984.

"""

from math import atan, cos, degrees, log, log10, pi, radians, sin, sqrt, tan

from fluids.constants import deg2rad, rad2deg
from fluids.friction import Clamond, friction_factor, friction_factor_curved, ft_Crane
from fluids.numerics import bisplev, horner, implementation_optimize_tck, interp, splev, tck_interp2d_linear
from fluids.piping import NPS40, S40i

__all__ = ['contraction_sharp', 'contraction_round',
           'contraction_round_Miller',
'contraction_conical', 'contraction_conical_Crane', 'contraction_beveled',  'diffuser_sharp',
'diffuser_conical', 'diffuser_conical_staged', 'diffuser_curved',
'diffuser_pipe_reducer',
'entrance_sharp', 'entrance_distance', 'entrance_angled',
'entrance_rounded', 'entrance_beveled', 'entrance_beveled_orifice',
'entrance_distance_45_Miller',
'exit_normal', 'bend_rounded', 'bend_rounded_Miller', 'bend_rounded_Crane', 'bend_miter',
'bend_miter_Miller', 'helix', 'spiral','Darby3K', 'Hooper2K', 'Kv_to_Cv', 'Cv_to_Kv',
'Kv_to_K', 'K_to_Kv', 'Cv_to_K', 'K_to_Cv', 'change_K_basis', 'Darby',
'Hooper', 'K_gate_valve_Crane', 'K_angle_valve_Crane', 'K_globe_valve_Crane',
'K_swing_check_valve_Crane', 'K_lift_check_valve_Crane',
'K_tilting_disk_check_valve_Crane', 'K_globe_stop_check_valve_Crane',
'K_angle_stop_check_valve_Crane', 'K_ball_valve_Crane',
'K_diaphragm_valve_Crane', 'K_foot_valve_Crane', 'K_butterfly_valve_Crane',
'K_plug_valve_Crane', 'K_branch_converging_Crane', 'K_run_converging_Crane',
'K_branch_diverging_Crane', 'K_run_diverging_Crane', 'v_lift_valve_Crane',
'Crane_loss_coefficient',
'CRANE_VALVES', 'DARBY_VALVES', 'HOOPER_VALVES']



def change_K_basis(K1, D1, D2):
    r'''Converts a loss coefficient `K1` from the basis of one diameter `D1`
    to another diameter, `D2`. This is necessary when dealing with pipelines
    of changing diameter.

    .. math::
        K_2 = K_1\frac{D_2^4}{D_1^4} = K_1 \frac{A_2^2}{A_1^2}

    Parameters
    ----------
    K1 : float
        Loss coefficient with respect to diameter `D`, [-]
    D1 : float
        Diameter of pipe for which `K1` has been calculated, [m]
    D2 : float
        Diameter of pipe for which `K2` will be calculated, [m]

    Returns
    -------
    K2 : float
        Loss coefficient with respect to the second diameter, [-]

    Notes
    -----
    This expression is shown in [1]_ and can easily be derived:

    .. math::
        \frac{\rho V_{1}^{2}}{2} \cdot K_{1} = \frac{\rho V_{2}^{2} }{2}
        \cdot K_{2}

    Substitute velocities for flow rate divided by area:

    .. math::
        \frac{8 K_{1} Q^{2} \rho}{\pi^{2} D_{1}^{4}} = \frac{8 K_{2} Q^{2}
        \rho}{\pi^{2} D_{2}^{4}}

    From here, simplification and rearrangement is all that is required.

    Examples
    --------
    >>> change_K_basis(K1=32.68875692997804, D1=.01, D2=.02)
    523.020110879

    References
    ----------
    .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical
       and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012.
    '''
    r = D2/D1
    r *= r
    return K1*r*r


### Entrances

entrance_sharp_methods = ['Rennels', 'Swamee', 'Blevins', 'Idelchik', 'Crane',
                          'Miller']
entrance_sharp_method_missing = ('Specified method not recognized; methods are %s'
                         %(entrance_sharp_methods))

[docs]def entrance_sharp(method='Rennels'): r'''Returns loss coefficient for a sharp entrance to a pipe. Six sources are available; four of them recommending K = 0.5, the most recent 'Rennels', method recommending K = 0.57, and the 'Miller' method recommending ~0.51 as read from a graph. .. figure:: fittings/flush_mounted_sharp_edged_entrance.png :scale: 30 % :alt: flush mounted sharp edged entrance; after [1]_ Parameters ---------- method : str, optional The method to use; one of 'Rennels', 'Swamee', 'Blevins', 'Idelchik', 'Crane', or 'Miller, [-] Returns ------- K : float Loss coefficient [-] Notes ----- 0.5 is the result for 'Swamee', 'Blevins', 'Idelchik', and 'Crane'; 'Miller' returns 0.5093, and 'Rennels' returns 0.57. Examples -------- >>> entrance_sharp() 0.57 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. .. [3] Idel`chik, I. E. Handbook of Hydraulic Resistance: Coefficients of Local Resistance and of Friction (Spravochnik Po Gidravlicheskim Soprotivleniyam, Koeffitsienty Mestnykh Soprotivlenii i Soprotivleniya Treniya). National technical information Service, 1966. .. [4] Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984. .. [5] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. .. [6] Swamee, Prabhata K., and Ashok K. Sharma. Design of Water Supply Pipe Networks. John Wiley & Sons, 2008. ''' if method is None: method = 'Rennels' if method in ('Swamee', 'Blevins', 'Crane', 'Idelchik'): return 0.50 elif method == 'Miller': # From entrance_rounded(Di=0.9, rc=0.0, method='Miller'); Not saying it's right return 0.5092676683721356 elif method == 'Rennels': return 0.57 else: raise ValueError(entrance_sharp_method_missing)
entrance_distance_Miller_coeffs = [3.5979871366071166, -2.735407311020481, -14.08678246875138, 10.637236472292983, 21.99568490754116, -16.38501138746954, -17.62779826803278, 12.945551397987447, 7.715463242992863, -5.850893341031715, -1.3809402870404826, 1.179637166644488, 0.08781141316107932, -0.09751968111743672, 0.00501792061942849, 0.0026378278251172615, 0.5309019247035696] entrance_distance_Idelchik_l_Di = [0.0, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 10.0] # last point infinity entrance_distance_Idelchik_t_Di = [0.0, 0.004, 0.008, 0.012, 0.016, 0.02, 0.024, 0.03, 0.04, 0.05, 1.0] # last point infinity entrance_distance_Idelchik_dat = [ [0.5, 0.57, 0.63, 0.68, 0.73, 0.8, 0.86, 0.92, 0.97, 1, 1], [0.5, 0.54, 0.58, 0.63, 0.67, 0.74, 0.8, 0.86, 0.9, 0.94, 0.94], [0.5, 0.53, 0.55, 0.58, 0.62, 0.68, 0.74, 0.81, 0.85, 0.88, 0.88], [0.5, 0.52, 0.53, 0.55, 0.58, 0.63, 0.68, 0.75, 0.79, 0.83, 0.83], [0.5, 0.51, 0.51, 0.53, 0.55, 0.58, 0.64, 0.7, 0.74, 0.77, 0.77], [0.5, 0.51, 0.51, 0.52, 0.53, 0.55, 0.6, 0.66, 0.69, 0.72, 0.72], [0.5, 0.5, 0.5, 0.51, 0.52, 0.53, 0.58, 0.62, 0.65, 0.68, 0.68], [0.5, 0.5, 0.5, 0.51, 0.52, 0.52, 0.54, 0.57, 0.59, 0.61, 0.61], [0.5, 0.5, 0.5, 0.51, 0.51, 0.51, 0.51, 0.52, 0.52, 0.54, 0.54], [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]] entrance_distance_Idelchik_tck = tck_interp2d_linear(entrance_distance_Idelchik_l_Di, entrance_distance_Idelchik_t_Di, entrance_distance_Idelchik_dat, kx=1, ky=1) entrance_distance_Idelchik_obj = lambda x, y: float(bisplev(x, y, entrance_distance_Idelchik_tck)) entrance_distance_Idelchik_obj = lambda x, y: bisplev(x, y, entrance_distance_Idelchik_tck) entrance_distance_Harris_t_Di = [0.00322, 0.007255, 0.01223, 0.018015, 0.021776, 0.029044, 0.039417, 0.049519, 0.058012, 0.066234, 0.076747, 0.088337, 0.098714, 0.109497, 0.121762, 0.130655, 0.14036, 0.148986, 0.159902, 0.17149, 0.179578, 0.189416, 0.200602, 0.208148, 0.217716, 0.228232, 0.239821, 0.250063, 0.260845, 0.270818, 0.280116, 0.289145] entrance_distance_Harris_Ks = [0.894574, 0.832435, 0.749768, 0.671543, 0.574442, 0.508432, 0.476283, 0.430261, 0.45027, 0.45474, 0.461993, 0.457042, 0.458745, 0.464889, 0.471594, 0.461638, 0.467778, 0.475024, 0.474509, 0.456239, 0.466258, 0.467959, 0.466336, 0.459705, 0.454746, 0.478092, 0.468701, 0.467074, 0.468779, 0.467151, 0.46441, 0.458894] entrance_distance_Harris_tck = implementation_optimize_tck([ [0.00322, 0.00322, 0.00322, 0.00322, 0.01223, 0.018015, 0.021776, 0.029044, 0.039417, 0.049519, 0.058012, 0.066234, 0.076747, 0.088337, 0.098714, 0.109497, 0.121762, 0.130655, 0.14036, 0.148986, 0.159902, 0.17149, 0.179578, 0.189416, 0.200602, 0.208148, 0.217716, 0.228232, 0.239821, 0.250063, 0.260845, 0.270818, 0.289145, 0.289145, 0.289145, 0.289145], [0.894574, 0.8607821362959746, 0.7418364422223542, 0.7071594764719331, 0.5230593641637336, 0.5053866365045014, 0.4869380604512194, 0.40993425463761973, 0.4588732899536263, 0.45115886608796796, 0.4672085434114074, 0.45422360120010624, 0.45882234693051327, 0.4633823025024543, 0.4785594597978615, 0.45603301615693537, 0.46825191653436804, 0.4759245648612374, 0.4816400424293727, 0.4467699156979281, 0.4713316096394432, 0.4667017151264001, 0.4686302748435692, 0.4597796190662107, 0.445267522727416, 0.491034205369033, 0.4641178520412072, 0.46721810151497395, 0.46958841021674314, 0.4664976446563455, 0.46420067427943945, 0.458894, 0.0, 0.0, 0.0, 0.0], 3]) entrance_distance_Harris_obj = lambda x : float(splev(x, entrance_distance_Harris_tck)) entrance_distance_methods = ['Rennels', 'Miller', 'Idelchik', 'Harris', 'Crane'] entrance_distance_unrecognized_msg = 'Specified method not recognized; methods are %s' %(entrance_distance_methods)
[docs]def entrance_distance(Di, t=None, l=None, method='Rennels'): r'''Returns the loss coefficient for a sharp entrance to a pipe at a distance from the wall of a reservoir. This calculation has five methods available; all but 'Idelchik' require the pipe to be at least `Di/2` into the reservoir. The most conservative formulation is that of Rennels; with Miller being almost identical until `t/Di` reaches 0.05, when it continues settling to K = 0.53 compared to K = 0.57 for 'Rennels'. 'Idelchik' is offset lower by about 0.03 and settles to 0.50. The 'Harris' method is a straight interpolation from experimental results with smoothing, and it is the lowest at all points. The 'Crane' [6]_ method returns 0.78 for all cases. The Rennels [1]_ formula is: .. math:: K = 1.12 - 22\frac{t}{d} + 216\left(\frac{t}{d}\right)^2 + 80\left(\frac{t}{d}\right)^3 .. figure:: fittings/sharp_edged_entrace_extended_mount.png :scale: 30 % :alt: sharp edged entrace, extended mount; after [1]_ Parameters ---------- Di : float Inside diameter of pipe, [m] t : float, optional Thickness of pipe wall, used in all but 'Crane' method, [m] l : float, optional The distance the pipe extends into the reservoir; used only in the 'Idelchik' method, defaults to `Di`, [m] method : str, optional One of 'Rennels', 'Miller', 'Idelchik', 'Harris', 'Crane', [-] Returns ------- K : float Loss coefficient [-] Notes ----- This type of inlet is also known as a Borda's mouthpiece. It is not of practical interest according to [1]_. The 'Idelchik' [3]_ data is recommended in [5]_; it also provides rounded values for the 'Harris. method. .. plot:: plots/entrance_distance_plot.py Examples -------- >>> entrance_distance(Di=0.1, t=0.0005) 1.0154100000000001 >>> entrance_distance(Di=0.1, t=0.0005, method='Idelchik') 0.9249999999999999 >>> entrance_distance(Di=0.1, t=0.0005, l=.02, method='Idelchik') 0.8474999999999999 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. .. [3] Idel`chik, I. E. Handbook of Hydraulic Resistance: Coefficients of Local Resistance and of Friction (Spravochnik Po Gidravlicheskim Soprotivleniyam, Koeffitsienty Mestnykh Soprotivlenii i Soprotivleniya Treniya). National technical information Service, 1966. .. [4] Harris, Charles William. The Influence of Pipe Thickness on Re-Entrant Intake Losses. Vol. 48. University of Washington, 1928. .. [5] Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984. .. [6] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if method is None: method = 'Rennels' if method == 'Rennels': t_Di = t/Di if t_Di > 0.05: t_Di = 0.05 return 1.12 + t_Di*(t_Di*(80.0*t_Di + 216.0) - 22.0) elif method == 'Miller': t_Di = t/Di if t_Di > 0.3: t_Di = 0.3 return horner(entrance_distance_Miller_coeffs, 20.0/3.0*(t_Di - 0.15)) elif method == 'Idelchik': if l is None: l = Di t_Di = min(t/Di, 1.0) l_Di = min(l/Di, 10.0) K = float(entrance_distance_Idelchik_obj(l_Di, t_Di)) if K < 0.0: K = 0.0 return K elif method == 'Harris': ratio = min(t/Di, 0.289145) # max value for interpolation - extrapolation looks bad K = float(entrance_distance_Harris_obj(ratio)) return K elif method == 'Crane': return 0.78 else: raise ValueError(entrance_distance_unrecognized_msg)
entrance_distance_45_Miller_coeffs = [1.866792110435199, -2.8873199398381075, -4.814715029513536, 10.49562589373457, 1.40401776402922, -14.035912282651882, 6.576826918678071, 7.854645523152614, -8.044860164646053, -1.1515885154512326, 4.145420152553604, -0.7994793202964967, -1.1034822877774095, 0.32764916637953573, 0.367065452438954, -0.2614447909010587, 0.29084476697430256]
[docs]def entrance_distance_45_Miller(Di, Di0): r'''Returns loss coefficient for a sharp entrance to a pipe at a distance from the wall of a reservoir with an initial 45 degree slope conical section of diameter `Di0` added to reduce the overall loss coefficient. This method is as shown in Miller's Internal Flow Systems [1]_. This method is a curve fit to a graph in [1]_ which was digitized. Parameters ---------- Di : float Inside diameter of pipe, [m] Di0 : float Initial inner diameter of the welded conical section of the entrance of the distant (re-entrant) pipe, [m] Returns ------- K : float Loss coefficient with respect to the main pipe diameter `Di`, [-] Notes ----- The graph predicts an almost constant loss coefficient once the thickness of pipe wall to pipe diameter ratio becomes ~0.02. Examples -------- >>> entrance_distance_45_Miller(Di=0.1, Di0=0.14) 0.24407641818143339 References ---------- .. [1] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. ''' t = 0.5*(Di0 - Di) t_Di = t/Di if t_Di > 0.3: t_Di = 0.3 return horner(entrance_distance_45_Miller_coeffs, 6.66666666666666696*(t_Di-0.15))
entrance_angled_methods = ['Idelchik'] entrance_angled_methods_missing = ('Specified method not recognized; methods are %s' %(entrance_angled_methods))
[docs]def entrance_angled(angle, method='Idelchik'): r'''Returns loss coefficient for a sharp, angled entrance to a pipe flush with the wall of a reservoir. First published in [2]_, it has been recommended in [3]_ as well as in [1]_. .. math:: K = 0.57 + 0.30\cos(\theta) + 0.20\cos(\theta)^2 .. figure:: fittings/entrance_mounted_at_an_angle.png :scale: 30 % :alt: entrace mounted at an angle; after [1]_ Parameters ---------- angle : float Angle of inclination (90° = straight, 0° = parallel to pipe wall), [degrees] method : str, optional The method to use; only 'Idelchik' is supported Returns ------- K : float Loss coefficient [-] Notes ----- Not reliable for angles under 20 degrees. Loss coefficient is the same for an upward or downward angled inlet. Examples -------- >>> entrance_angled(30) 0.9798076211353315 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Idel`chik, I. E. Handbook of Hydraulic Resistance: Coefficients of Local Resistance and of Friction (Spravochnik Po Gidravlicheskim Soprotivleniyam, Koeffitsienty Mestnykh Soprotivlenii i Soprotivleniya Treniya). National technical information Service, 1966. .. [3] Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984. ''' if method == 'Idelchik' or method is None: cos_term = cos(deg2rad*angle) return 0.57 + cos_term*(0.2*cos_term + 0.3) else: raise ValueError(entrance_angled_methods_missing)
entrance_rounded_Miller_coeffs = [1.3127209945178038, 0.19963046592715727, -6.49081916725612, -0.10347409377743588, 12.68369791325003, -0.9435681020599904 , -12.44320584089916, 1.328251365167716, 6.668390027065714, -0.4356382649470076, -2.209229212394282, -0.07222448354500295, 0.6786898049825905, -0.18686362789567468, 0.020064570486606065, -0.013120241146656442, 0.061951596342059975] entrance_rounded_ratios_Idelchik = [0, .01, .02, .03, .04, .05, .06, .08, .12, .16, .2] entrance_rounded_Ks_Idelchik = [.5, .44, .37, .31, .26, .22, .2, .15, .09, .06, .03] entrance_rounded_Idelchik_tck = implementation_optimize_tck([[0.0, 0.0, 0.0, 0.015, 0.025, 0.035, 0.045, 0.055, 0.07, 0.1, 0.14, 0.2, 0.2, 0.2], [0.5, 0.46003224474143023, 0.3682580956033294, 0.30877401146621397, 0.2590978355993873, 0.2166389749374616, 0.19717564973543905, 0.1332971654240214, 0.08659056691519569, 0.05396118560777325, 0.03, 0.0, 0.0, 0.0], 2]) entrance_rounded_Idelchik = lambda x : float(splev(x, entrance_rounded_Idelchik_tck)) entrance_rounded_ratios_Crane = [0.0, .02, .04, .06, .1, .15] entrance_rounded_Ks_Crane = [.5, .28, .24, .15, .09, .04] entrance_rounded_ratios_Harris = [0.0, .01, .02, .03, .04, .05, .06, .08, .12, .16] entrance_rounded_Ks_Harris = [.44, .35, .28, .22, .17, .13, .1, .07, .03, 0.0] entrance_rounded_Harris_tck = implementation_optimize_tck([[0.0, 0.0, 0.0, 0.015, 0.025, 0.035, 0.045, 0.055, 0.07, 0.1, 0.16, 0.16, 0.16], [0.44, 0.36435669860605086, 0.2790010365858813, 0.2187082142826953, 0.16874967771794716, 0.1287937194096216, 0.09091157742799895, 0.06354756460434334, 0.01885121769782832, 0.0, 0.0, 0.0, 0.0], 2]) entrance_rounded_Harris = lambda x : float(splev(x, entrance_rounded_Harris_tck)) entrance_rounded_methods = ['Rennels', 'Crane', 'Miller', 'Idelchik', 'Harris', 'Swamee'] entrance_rounded_methods_error = ('Specified method not recognized; methods are %s' %(entrance_rounded_methods))
[docs]def entrance_rounded(Di, rc, method='Rennels'): r'''Returns loss coefficient for a rounded entrance to a pipe flush with the wall of a reservoir. This calculation has six methods available. The most conservative formulation is that of Rennels; with the Swammee correlation being 0.02-0.07 lower. They were published in 2012 and 2008 respectively, and for this reason could be regarded as more reliable. The Idel'chik correlation appears based on the Hamilton data; and the Miller correlation as well, except a little more conservative. The Crane model trends similarly but only has a few points. The Harris data set is the lowest. The Rennels [1]_ formulas are: .. math:: K = 0.0696\left(1 - 0.569\frac{r}{d}\right)\lambda^2 + (\lambda-1)^2 .. math:: \lambda = 1 + 0.622\left(1 - 0.30\sqrt{\frac{r}{d}} - 0.70\frac{r}{d}\right)^4 The Swamee [5]_ formula is: .. math:: K = 0.5\left[1 + 36\left(\frac{r}{D}\right)^{1.2}\right]^{-1} .. figure:: fittings/flush_mounted_rounded_entrance.png :scale: 30 % :alt: rounded entrace mounted straight and flush; after [1]_ Parameters ---------- Di : float Inside diameter of pipe, [m] rc : float Radius of curvature of the entrance, [m] method : str, optional One of 'Rennels', 'Crane', 'Miller', 'Idelchik', 'Harris', or 'Swamee'. Returns ------- K : float Loss coefficient [-] Notes ----- For generously rounded entrance (rc/Di >= 1), the loss coefficient converges to 0.03 in the Rennels method. The Rennels formulation was derived primarily from data and theoretical analysis from different flow scenarios than a rounded pipe entrance; the only available data in [2]_ is quite old and [1]_ casts doubt on it. The Hamilton data set is available in [1]_ and [6]_. .. plot:: plots/entrance_rounded_plot.py Examples -------- Point from Diagram 9.2 in [1]_, which was used to confirm the Rennels model implementation: >>> entrance_rounded(Di=0.1, rc=0.0235) 0.09839534618360923 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Hamilton, James Baker. Suppression of Pipe Intake Losses by Various Degrees of Rounding. Seattle: Published by the University of Washington, 1929. https://search.library.wisc.edu/catalog/999823652202121. .. [3] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. .. [4] Harris, Charles William. Elimination of Hydraulic Eddy Current Loss at Intake, Agreement of Theory and Experiment. University of Washington, 1930. .. [5] Swamee, Prabhata K., and Ashok K. Sharma. Design of Water Supply Pipe Networks. John Wiley & Sons, 2008. .. [6] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. .. [7] Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984. .. [8] Idel`chik, I. E. Handbook of Hydraulic Resistance: Coefficients of Local Resistance and of Friction (Spravochnik Po Gidravlicheskim Soprotivleniyam, Koeffitsienty Mestnykh Soprotivlenii i Soprotivleniya Treniya). National technical information Service, 1966. ''' if method is None: method = 'Rennels' ratio = rc/Di if method == 'Rennels': if ratio > 1.0: return 0.03 lbd = (1.0 - 0.30*sqrt(ratio) - 0.70*ratio) lbd *= lbd lbd = 1.0 + 0.622*lbd*lbd return 0.0696*(1.0 - 0.569*ratio)*lbd*lbd + (lbd - 1.0)*(lbd - 1.0) elif method == 'Swamee': return 0.5/(1.0 + 36.0*(ratio)**1.2) elif method == 'Crane': if ratio < 0: return 0.5 elif ratio > 0.15: return 0.04 else: return interp(ratio, entrance_rounded_ratios_Crane, entrance_rounded_Ks_Crane) elif method == 'Miller': if ratio > 0.3: ratio = 0.3 return horner(entrance_rounded_Miller_coeffs, (20.0/3.0)*(ratio - 0.15)) elif method == 'Harris': if ratio > .16: return 0.0 return float(splev(ratio, entrance_rounded_Harris_tck)) elif method == 'Idelchik': if ratio > .2: return entrance_rounded_Ks_Idelchik[-1] return float(splev(ratio, entrance_rounded_Idelchik_tck)) else: raise ValueError(entrance_rounded_methods_error)
entrance_beveled_methods = ['Rennels', 'Idelchik'] entrance_beveled_methods_unknown_msg = 'Specified method not recognized; methods are %s' %entrance_beveled_methods entrance_beveled_Idelchik_l_Di = [0.025, 0.05, 0.075, 0.1, 0.15, 0.6] entrance_beveled_Idelchik_angles = [0.0, 10.0, 20.0, 30.0, 40.0, 60.0, 100.0, 140.0, 180.0] entrance_beveled_Idelchik_dat = [ [0.5, 0.47, 0.45, 0.43, 0.41, 0.4, 0.42, 0.45, 0.5], [0.5, 0.45, 0.41, 0.36, 0.33, 0.3, 0.35, 0.42, 0.5], [0.5, 0.42, 0.35, 0.3, 0.26, 0.23, 0.3, 0.4, 0.5], [0.5, 0.39, 0.32, 0.25, 0.22, 0.18, 0.27, 0.38, 0.5], [0.5, 0.37, 0.27, 0.2, 0.16, 0.15, 0.25, 0.37, 0.5], [0.5, 0.27, 0.18, 0.13, 0.11, 0.12, 0.23, 0.36, 0.5]] entrance_beveled_Idelchik_tck = tck_interp2d_linear(entrance_beveled_Idelchik_angles, entrance_beveled_Idelchik_l_Di, entrance_beveled_Idelchik_dat, kx=1, ky=1) entrance_beveled_Idelchik_obj = lambda x, y : float(bisplev(x, y, entrance_beveled_Idelchik_tck))
[docs]def entrance_beveled(Di, l, angle, method='Rennels'): r'''Returns loss coefficient for a beveled or chamfered entrance to a pipe flush with the wall of a reservoir. This calculation has two methods available. The 'Rennels' and 'Idelchik' methods have similar trends, but the 'Rennels' formulation is centered around a straight loss coefficient of 0.57, so it is normally at least 0.07 higher. The Rennels [1]_ formulas are: .. math:: K = 0.0696\left(1 - C_b\frac{l}{d}\right)\lambda^2 + (\lambda-1)^2 .. math:: \lambda = 1 + 0.622\left[1-1.5C_b\left(\frac{l}{d} \right)^{\frac{1-(l/d)^{1/4}}{2}}\right] .. math:: C_b = \left(1 - \frac{\theta}{90}\right)\left(\frac{\theta}{90} \right)^{\frac{1}{1+l/d}} .. figure:: fittings/flush_mounted_beveled_entrance.png :scale: 30 % :alt: Beveled entrace mounted straight; after [1]_ Parameters ---------- Di : float Inside diameter of pipe, [m] l : float Length of bevel measured parallel to the pipe length, [m] angle : float Angle of bevel with respect to the pipe length, [degrees] method : str, optional One of 'Rennels', or 'Idelchik', [-] Returns ------- K : float Loss coefficient [-] Notes ----- A cheap way of getting a lower pressure drop. Little credible data is available. The table of data in [2]_ uses the angle for both bevels, so it runs from 0 to 180 degrees; this function follows the convention in [1]_ which uses only one angle, with the angle varying from 0 to 90 degrees. .. plot:: plots/entrance_beveled_plot.py Examples -------- >>> entrance_beveled(Di=0.1, l=0.003, angle=45) 0.450868642219 >>> entrance_beveled(Di=0.1, l=0.003, angle=45, method='Idelchik') 0.399500000000 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Idel`chik, I. E. Handbook of Hydraulic Resistance: Coefficients of Local Resistance and of Friction (Spravochnik Po Gidravlicheskim Soprotivleniyam, Koeffitsienty Mestnykh Soprotivlenii i Soprotivleniya Treniya). National technical information Service, 1966. ''' if method is None: method = 'Rennels' if method == 'Rennels': Cb = (1-angle/90.)*(angle/90.)**(1./(1 + l/Di )) lbd = 1 + 0.622*(1 - 1.5*Cb*(l/Di)**((1 - sqrt(sqrt(l/Di)))/2.)) return 0.0696*(1 - Cb*l/Di)*lbd**2 + (lbd - 1.)**2 elif method == 'Idelchik': return float(bisplev(angle*2.0, l/Di, entrance_beveled_Idelchik_tck)) else: raise ValueError(entrance_beveled_methods_unknown_msg)
[docs]def entrance_beveled_orifice(Di, do, l, angle): r'''Returns loss coefficient for a beveled or chamfered orifice entrance to a pipe flush with the wall of a reservoir, as shown in [1]_. .. math:: K = 0.0696\left(1 - C_b\frac{l}{d_o}\right)\lambda^2 + \left(\lambda -\left(\frac{d_o}{D_i}\right)^2\right)^2 .. math:: \lambda = 1 + 0.622\left[1-C_b\left(\frac{l}{d_o}\right)^{\frac{1- (l/d_o)^{0.25}}{2}}\right] .. math:: C_b = \left(1 - \frac{\Psi}{90}\right)\left(\frac{\Psi}{90} \right)^{\frac{1}{1+l/d_o}} .. figure:: fittings/flush_mounted_beveled_orifice_entrance.png :scale: 30 % :alt: Beveled orifice entrace mounted straight; after [1]_ Parameters ---------- Di : float Inside diameter of pipe, [m] do : float Inside diameter of orifice, [m] l : float Length of bevel measured parallel to the pipe length, [m] angle : float Angle of bevel with respect to the pipe length, [degrees] Returns ------- K : float Loss coefficient [-] Examples -------- >>> entrance_beveled_orifice(Di=0.1, do=.07, l=0.003, angle=45) 1.2987552913818574 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. ''' Cb = (1-angle/90.)*(angle/90.)**(1./(1 + l/do )) lbd = 1 + 0.622*(1 - Cb*(l/do)**((1 - sqrt(sqrt(l/do)))/2.)) return 0.0696*(1 - Cb*l/do)*lbd**2 + (lbd - (do/Di)**2)**2
### Exits
[docs]def exit_normal(): r'''Returns loss coefficient for any exit to a pipe as shown in [1]_ and in other sources. .. math:: K = 1 .. figure:: fittings/flush_mounted_exit.png :scale: 28 % :alt: Exit from a flush mounted wall; after [1]_ Returns ------- K : float Loss coefficient [-] Notes ----- It has been found on occasion that K = 2.0 for laminar flow, and ranges from about 1.04 to 1.10 for turbulent flow. Examples -------- >>> exit_normal() 1.0 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. ''' return 1.0
### Bends tck_bend_rounded_Miller = implementation_optimize_tck([[0.500967, 0.500967, 0.500967, 0.500967, 0.5572659504420276, 0.6220535279438968, 0.6876695918008857, 0.8109956990835443, 0.8966138996017785, 1.0418136796591293, 1.2129808986390955, 1.4328097893561944, 2.684491977649823, 3.496050493509287, 4.245254058334557, 10.0581, 10.0581, 10.0581, 10.0581], [10.0022, 10.0022, 10.0022, 10.0022, 26.661576730080427, 35.71142422728946, 46.22896414495794, 54.476944091380965, 67.28681897720492, 79.96560467244989, 88.89484575805731, 104.37345376723293, 113.75217318286595, 121.36638011164008, 139.53481668808192, 180.502, 180.502, 180.502, 180.502], [0.02844925354339322, 0.032368056788003474, 0.06341726367587057, 0.18372991235687228, 0.27828335685928296, 0.4184452895626468, 0.5844709012848479, 0.8517327028006999, 1.0883889837806633, 1.003595822015052, 1.2959349743905006, 1.3631701864169843, 3.2579960738248563, 8.188259745620396, 6.370167194425542, 0.026614405579949103, 0.03578575879432178, 0.05399131725104529, 0.17357295746658216, 0.2597698136964017, 0.384398460262134, 0.5537955210508835, 0.842964805734998, 1.1076060802420074, 1.0500502914944205, 1.2160489773171173, 1.2940140217639442, 2.5150913200614293, 5.987790923112488, 4.791049223949247, 0.026866783841898684, 0.03061409809632371, 0.054698306220358, 0.14037162784411245, 0.23981090432386729, 0.31617091309760137, 0.47435842573782666, 0.7484605121106159, 0.9223888516911868, 1.0345139221619066, 1.0709769967277933, 1.1489283659291687, 1.4249255928619116, 2.6908421883082823, 2.3898833324508804, 0.019707980719056793, 0.03350958504709355, 0.0457699204936841, 0.1180773988295937, 0.18163838540491214, 0.2955424583244998, 0.3178086095370295, 0.54907384767895, 0.7497276995283433, 0.8353766950608585, 0.8907203653185313, 0.941376749552297, 0.8755423259796333, 0.8987849646797164, 0.9905785504810203, 0.018632197087313764, 0.0275473376021632, 0.046686663726990756, 0.09334625398868963, 0.15009471210360348, 0.21438462374865175, 0.310541469358518, 0.27652184608845864, 0.4703245212932829, 0.5612926929410017, 0.6344189573543495, 0.6897616299237337, 0.8553230255854581, 0.8050040042565408, 0.7800498994134173, 0.017040716941189974, 0.027163747207842776, 0.04233976165781228, 0.08546809847236579, 0.11872359104267481, 0.1748602349243538, 0.248787221592314, 0.3166892465009758, 0.2894990945943436, 0.35635089905047324, 0.3942719381041552, 0.4019846022857163, 0.4910888827789205, 0.4424331343990761, 0.5367477778555589, 0.017232689797500957, 0.024595005629126976, 0.04235982677436609, 0.0748705682747817, 0.11096283696103083, 0.13900984487771062, 0.18773056195495877, 0.2400721832034611, 0.28581377924973544, 0.282839816159864, 0.2907117502580411, 0.3035848810896592, 0.31268019467513564, 0.3365050687225188, 0.2836774098946595, 0.017462451480157917, 0.02373981127475937, 0.04248526591300313, 0.07305722078054935, 0.09424065630357203, 0.13682400355164548, 0.15020534827616405, 0.2100221959547714, 0.23136495625582817, 0.24417894312621574, 0.2505645472554214, 0.24143469557592281, 0.24722191256497117, 0.2195110087547775, 0.29557609063213136, 0.017605444779345832, 0.026265210174737128, 0.0445497171166642, 0.07254637551095446, 0.08779690828578819, 0.11992614224260065, 0.14501268843599757, 0.17386066713179812, 0.21657094190224363, 0.21594544490951023, 0.22661999176624517, 0.23759356544596819, 0.23887614636323537, 0.25802515101229484, 0.20566480389514516, 0.01928450591486404, 0.03264367752872495, 0.05391006363370407, 0.07430728218140033, 0.08818045730326454, 0.09978389535000864, 0.12544634357734885, 0.13365159719049172, 0.15802979203343911, 0.17543365869590444, 0.17531453508236272, 0.1706085325985479, 0.15983319357859727, 0.16872558079206196, 0.19799750352823683, 0.020835891827102552, 0.047105767455498285, 0.05307639179638059, 0.07839236342751181, 0.09519829368423402, 0.10189528661430994, 0.12852821694010982, 0.13195311029179943, 0.1594822363328695, 0.15660304273110143, 0.15934161651984413, 0.17702957118830723, 0.1892675345030034, 0.19710951153945122, 0.1897835097361326, 0.031571285288316195, 0.04810266172763896, 0.05660304311192384, 0.09317293919692342, 0.08967028392412497, 0.12028974875677166, 0.1182836264474129, 0.13845925262729528, 0.15739100571169004, 0.17649056196464383, 0.20171423738165223, 0.20947832805305883, 0.22837004534830094, 0.23661874048689152, 0.24537433391842686, 0.042992073811512765, 0.045958026954244176, 0.08988351069774198, 0.08320361205549355, 0.1253881915447805, 0.12765039447605908, 0.1632907944306065, 0.17922551055575348, 0.20436939408609628, 0.23133806857897737, 0.22837190631962206, 0.2611718034649056, 0.30462224139228183, 0.3277471634644065, 0.3595577208662931, 0.042671097083349346, 0.06027193387363409, 0.07182684474072856, 0.12072547771177115, 0.1331787059163636, 0.16137414417679433, 0.1780034002291815, 0.19820571860540606, 0.2294059556234193, 0.23221403415772682, 0.2697708431035234, 0.2813760107306456, 0.28992333749905363, 0.3650401400682786, 0.8993207970132076, 0.045660964207664585, 0.06299599466264151, 0.09193684371316964, 0.12747145786167088, 0.14606550538249963, 0.172664884028299, 0.19152378303841075, 0.2212007207927944, 0.23752800077573005, 0.26289800433018995, 0.2772198641539113, 0.2995308585350757, 0.3549459028594012, 0.8032461437896778, 3.330618601208751], 3, 3]) bend_rounded_Miller_Kb = lambda rc_D, angle : float(bisplev(rc_D, angle, tck_bend_rounded_Miller)) tck_bend_rounded_Miller_C_Re = implementation_optimize_tck([[4.0, 4.0, 4.0, 4.0, 8.0, 8.0, 8.0, 8.0], [1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0], [2.177340320782947, 2.185952396281732, 2.185952396281732, 2.1775876405173977, 0.6513348082098823, 0.7944713057222101, 0.7944713057222103, 1.0526247737400114, 0.6030278030721317, 1.3741240162063968, 1.3741240162063992, 0.7693594604301893, -2.1663631289607883, -1.9474318981548622, -1.9474318981548622, 0.4196741237602154], 3, 3]) bend_rounded_Miller_C_Re = lambda Re, rc_D : float(bisplev(log10(Re), rc_D, tck_bend_rounded_Miller_C_Re)) bend_rounded_Miller_C_Re_limit_1 = [2428087.757821312, -13637184.203693766, 28450331.830760233, -25496945.91463643, 8471761.477755375] tck_bend_rounded_Miller_C_o_0_1 = implementation_optimize_tck([[9.975803953769495e-06, 9.975803953769495e-06, 9.975803953769495e-06, 9.975803953769495e-06, 0.5259485989276764, 1.3157845547408782, 3.220104449183945, 6.133677908951886, 30.260656153593906, 30.260656153593906, 30.260656153593906, 30.260656153593906], [0.6179524338907976, 0.6000479624108129, 0.49299050530751654, 0.4820011733402483, 0.5584830305084972, 0.7496716557444135, 0.8977538553873484, 0.9987218804089956, 0.0, 0.0, 0.0, 0.0], 3]) tck_bend_rounded_Miller_C_o_0_15 = implementation_optimize_tck([[0.0025931401409935687, 0.0025931401409935687, 0.0025931401409935687, 0.0025931401409935687, 0.26429667728434275, 0.5188174292838083, 1.469212480387932, 4.269571348168375, 13.268280073552294, 26.28093462852014, 26.28093462852014, 26.28093462852014, 26.28093462852014], [0.8691924906711972, 0.8355177386350426, 0.7617588987656675, 0.5853012015918869, 0.5978128647571033, 0.7366100253604377, 0.8229203841913866, 0.9484887080989913, 1.0003643259424702, 0.0, 0.0, 0.0, 0.0], 3]) tck_bend_rounded_Miller_C_o_0_2 = implementation_optimize_tck([[-0.001273275512351991, -0.001273275512351991, -0.001273275512351991, - 0.001273275512351991, 0.36379835796750504, 0.7789151587713531, 1.7319487323386349, 3.559883175039053, 22.10600230228466, 22.10600230228466, 22.10600230228466, 22.10600230228466], [1.2055892891232, 1.1810797953131011, 0.8556056552110055, 0.6595884323229468, 0.6669634037761268, 0.8636791463334055, 0.8855712717206472, 0.9992625616471772, 0.0, 0.0, 0.0, 0.0], 3]) tck_bend_rounded_Miller_C_o_0_25 = implementation_optimize_tck([[0.0025931401409935687, 0.0025931401409935687, 0.0025931401409935687, 0.0025931401409935687, 0.2765978180291006, 0.5010875816968301, 0.6395222359284018, 0.661563946104784, 0.6887462820881093, 0.7312909084975013, 0.7605490601821624, 0.8078652661481783, 0.8553090397903271, 1.024376958429362, 1.4748577103270428, 2.052843716337269, 3.9670225184835175, 6.951737782758053, 16.770001745987884, 16.770001745987884, 16.770001745987884, 16.770001745987884], [2.7181584441006414, 2.6722855229796196, 2.510271857479865, 2.162580617260359, 1.8234805515473758, 1.5274137403431902, 1.3876379087140025, 1.2712745614209848, 1.1478416325256429, 1.015542018903243, 0.8445749706812837, 0.7368799268423506, 0.7061205857035833, 0.7381928947255646, 0.7960778489514514, 0.878729192230999, 0.9281388590439098, 0.9825611959699471, 0.0, 0.0, 0.0, 0.0], 3]) tck_bend_rounded_Miller_C_o_1_0 = implementation_optimize_tck([[0.0025931401409935687, 0.0025931401409935687, 0.0025931401409935687, 0.0025931401409935687, 0.4940382602529053, 0.7383107558560895, 0.8929948619544391, 0.9910262538499016, 1.1035407055233972, 1.2685727302009009, 2.190931635360523, 3.718073594472333, 6.026458907878363, 13.268280073552294, 13.268280073552294, 13.268280073552294, 13.268280073552294], [2.713127433391318, 2.6799201583608965, 2.4446034702691906, 2.0505313661892837, 1.7853408404592677, 1.5802763594858027, 1.395503315683405, 1.0504150726350026, 0.9294800209596744, 0.8937523212160566, 0.9339124388590752, 0.9769117997985829, 0.9948478073955791, 0.0, 0.0, 0.0, 0.0], 3]) tck_bend_rounded_Miller_C_os = (tck_bend_rounded_Miller_C_o_0_1, tck_bend_rounded_Miller_C_o_0_15, tck_bend_rounded_Miller_C_o_0_2, tck_bend_rounded_Miller_C_o_0_25, tck_bend_rounded_Miller_C_o_1_0) bend_rounded_Miller_C_o_Kbs = [.1, .15, .2, .25, 1] bend_rounded_Miller_C_o_limits = [30.260656153593906, 26.28093462852014, 22.10600230228466, 16.770001745987884, 13.268280073552294] bend_rounded_Miller_C_o_limit_0_01 = [0.6169055099514943, 0.8663244713199465, 1.2029584898712695, 2.7143438886138744, 2.7115417734646114] def Miller_bend_roughness_correction(Re, Di, roughness): # Section 9.2.4 - Roughness correction # Re limited to under 1E6 in friction factor falculations # Use a cached smooth fd value if Re too high Re_fd_min = min(1E6, Re) if Re_fd_min < 1E6: fd_smoth = friction_factor(Re=Re_fd_min, eD=0.0) else: fd_smoth = 0.011645040997991626 fd_rough = friction_factor(Re=Re_fd_min, eD=roughness/Di) C_roughness = fd_rough/fd_smoth return C_roughness def Miller_bend_unimpeded_correction(Kb, Di, L_unimpeded): """Limitations as follows: * Ratio not over 30 * If ratio under 0.01, tabulated values are used near the limits (discontinuity in graph anyway) * If ratio for a tried curve larger than max value, max value is used instead of calculating it * Kb limited to between 0.1 and 1.0 * When between two Kb curves, interpolate linearly after evaluating both splines appropriately """ if Kb < 0.1: Kb_C_o = 0.1 elif Kb > 1: Kb_C_o = 1.0 else: Kb_C_o = Kb L_unimpeded_ratio = L_unimpeded/Di if L_unimpeded_ratio > 30: L_unimpeded_ratio = 30.0 for i in range(len(bend_rounded_Miller_C_o_Kbs)): Kb_low, Kb_high = bend_rounded_Miller_C_o_Kbs[i], bend_rounded_Miller_C_o_Kbs[i+1] if Kb_low <= Kb_C_o <= Kb_high: if L_unimpeded_ratio >= bend_rounded_Miller_C_o_limits[i]: Co_low = 1.0 elif L_unimpeded_ratio <= 0.01: Co_low = bend_rounded_Miller_C_o_limit_0_01[i] else: Co_low = float(splev(L_unimpeded_ratio, tck_bend_rounded_Miller_C_os[i])) if L_unimpeded_ratio >= bend_rounded_Miller_C_o_limits[i+1]: Co_high = 1.0 elif L_unimpeded_ratio <= 0.01: Co_high = bend_rounded_Miller_C_o_limit_0_01[i+1] else: Co_high = float(splev(L_unimpeded_ratio, tck_bend_rounded_Miller_C_os[i+1])) C_o = Co_low + (Kb_C_o - Kb_low)*(Co_high - Co_low)/(Kb_high - Kb_low) return C_o
[docs]def bend_rounded_Miller(Di, angle, Re, rc=None, bend_diameters=None, roughness=0.0, L_unimpeded=None): r'''Calculates the loss coefficient for a rounded pipe bend according to Miller [1]_. This is a sophisticated model which uses corrections for pipe roughness, the length of the pipe downstream before another interruption, and a correction for Reynolds number. It interpolates several times using several corrections graphs in [1]_. Parameters ---------- Di : float Inside diameter of pipe, [m] angle : float Angle of bend, [degrees] Re : float Reynolds number of the pipe (no specification if inlet or outlet properties should be used), [m] rc : float, optional Radius of curvature of the entrance, [m] bend_diameters : float, optional Number of diameters of pipe making up the bend radius (used if rc not provided; defaults to 5), [-] roughness : float, optional Roughness of bend wall, [m] L_unimpeded : float, optional The length of unimpeded pipe without any fittings, instrumentation, or flow disturbances downstream (assumed 20 diameters if not specified), [m] Returns ------- K : float Loss coefficient [-] Notes ----- When inputting bend diameters, note that manufacturers often specify this as a multiplier of nominal diameter, which is different than actual diameter. Those require that rc be specified. `rc` is limited to 0.5 or above; which represents a sharp, square, inner edge - and an outer bend radius of 1.0. Losses are at a minimum when this value is large. This was developed for bend angles between 10 and 180 degrees; and r/D ratios between 0.5 and 10. Both smooth and rough data was used in its development from several sources. Note the loss coefficient includes the surface friction of the pipe as if it was straight. Examples -------- >>> bend_rounded_Miller(Di=.6, bend_diameters=2, angle=90, Re=2e6, ... roughness=2E-5, L_unimpeded=30*.6) 0.15261820705145895 References ---------- .. [1] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. ''' if rc is None: if bend_diameters is None: bend_diameters = 5.0 rc = Di*bend_diameters radius_ratio = rc/Di if L_unimpeded is None: # Assumption - smooth outlet L_unimpeded = 20.0*Di # Graph is defined for angles 10 to 180 degrees, ratios 0.5 to 10 if radius_ratio < 0.5: radius_ratio = 0.5 if radius_ratio > 10.0: radius_ratio = 10.0 if angle < 10.0: angle = 10.0 # Curve fit in terms of degrees # Caching could work here - angle, radius ratio does not change often Kb = bend_rounded_Miller_Kb(radius_ratio, angle) C_roughness = Miller_bend_roughness_correction(Re=Re, Di=Di, roughness=roughness) """Section 9.2.2 - Reynolds Number Correction Allow some extrapolation up to 1E8 (1E7 max in graph but the trend looks good) """ Re_C_Re = min(max(Re, 1E4), 1E8) if radius_ratio >= 2.0: if Re_C_Re == 1E8: C_Re = 0.4196741237602154 # bend_rounded_Miller_C_Re(1e8, 2.0) elif Re_C_Re == 1E4: C_Re = 2.1775876405173977 # bend_rounded_Miller_C_Re(1e4, 2.0) else: C_Re = bend_rounded_Miller_C_Re(Re_C_Re, 2.0) elif radius_ratio <= 1.0: # newton(lambda x: bend_rounded_Miller_C_Re(x, 1.0)-1, 2e5) to get the boundary value C_Re_1 = bend_rounded_Miller_C_Re(Re_C_Re, 1.0) if Re_C_Re < 207956.58904584477 else 1.0 if radius_ratio > 0.7 or Kb < 0.4: C_Re = C_Re_1 else: C_Re = Kb/(Kb - 0.2*C_Re_1 + 0.2) if C_Re > 2.2 or C_Re < 0: C_Re = 2.2 else: # regardless of ratio - 1 if Re_C_Re > 1048884.4656835075: C_Re = 1.0 elif Re_C_Re > horner(bend_rounded_Miller_C_Re_limit_1, radius_ratio): C_Re = 1.0 # ps = np.linspace(1, 2) # qs = [secant(lambda x: bend_rounded_Miller_C_Re(x, i)-1, 2e5) for i in ps] # np.polyfit(ps, qs, 4).tolist() # Line of C_Re=1 as a function of r_d between 0 and 1 else: C_Re = bend_rounded_Miller_C_Re(Re_C_Re, radius_ratio) C_o = Miller_bend_unimpeded_correction(Kb=Kb, Di=Di, L_unimpeded=L_unimpeded) # print('Kb=%g, C Re=%g, C rough =%g, Co=%g' %(Kb, C_Re, C_roughness, C_o)) return Kb*C_Re*C_roughness*C_o
bend_rounded_Crane_ratios = [1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 20.0] bend_rounded_Crane_fds = [20.0, 14.0, 12.0, 12.0, 14.0, 17.0, 24.0, 30.0, 34.0, 38.0, 42.0, 50.0] bend_rounded_Crane_coeffs = [111.75011378177442, -331.89911345404107, -27.841951521656483, 1066.8916917931147, -857.8702190626232, -1151.4621655498092, 1775.2416673594603, 216.37911821941805, -1458.1661519377653, 447.169127650163, 515.361158769082, -322.58377486107577, -38.38349416327068, 71.12796602489138, -16.198233745350535, 19.377150177339015, 31.107110520349494]
[docs]def bend_rounded_Crane(Di, angle, rc=None, bend_diameters=None): r'''Calculates the loss coefficient for any rounded bend in a pipe according to the Crane TP 410M [1]_ method. This method effectively uses an interpolation from tabulated values in [1]_ for friction factor multipliers vs. curvature radius. .. figure:: fittings/bend_rounded.png :scale: 30 % :alt: rounded bend; after [1]_ Parameters ---------- Di : float Inside diameter of pipe, [m] angle : float Angle of bend, [degrees] rc : float, optional Radius of curvature of the entrance; specify either `rc` or `bend_diameters`, optional [m] bend_diameters : float, optional Number of diameters of pipe making up the bend radius; specify either `rc` or `bend_diameters`, [-] Returns ------- K : float Loss coefficient [-] Notes ----- The Crane method does match the trend of increased pressure drop as roughness increases. The points in [1]_ are extrapolated to other angles via a well-fitting Chebyshev approximation, whose accuracy can be seen in the below plot. .. plot:: plots/bend_rounded_Crane_plot.py Examples -------- >>> bend_rounded_Crane(Di=.4020, rc=.4*5, angle=30) 0.09321910015613409 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if (rc is not None and bend_diameters is not None): # numba: delete if abs(Di*bend_diameters/rc - 1.0) > 1e-12: # numba: delete raise ValueError("Cannot specify both `rc` and `bend_diameters`") # numba: delete if rc is None: if bend_diameters is None: bend_diameters = 5.0 rc = Di*bend_diameters fd = ft_Crane(Di) radius_ratio = rc/Di if radius_ratio < 1.0: radius_ratio = 1.0 elif radius_ratio > 20.0: radius_ratio = 20.0 factor = horner(bend_rounded_Crane_coeffs, 0.105263157894736836*(radius_ratio - 10.5)) K = fd*factor K = (angle/90.0 - 1.0)*(0.25*pi*fd*radius_ratio + 0.5*K) + K return K
_Ito_angles = [45.0, 90.0, 180.0] def bend_rounded_Ito(Di, angle, Re, rc=None, bend_diameters=None, roughness=0.0): """Ito method as shown in Blevins. Curved friction factor as given in Blevins, with minor tweaks to be more accurate to the original methods. """ if not rc: if bend_diameters is None: bend_diameters = 5.0 rc = Di*bend_diameters radius_ratio = rc/Di angle_rad = radians(angle) De2 = Re*(Di/rc)**2.0 if rc > 50.0*Di: alpha = 1.0 else: # Alpha is up to 6, as ratio gets higher, can go down to 1 alpha_45 = 1.0 + 5.13*(Di/rc)**1.47 alpha_90 = 0.95 + 4.42*(Di/rc)**1.96 if rc/Di < 9.85 else 1.0 alpha_180 = 1.0 + 5.06*(Di/rc)**4.52 alpha = interp(angle, _Ito_angles, [alpha_45, alpha_90, alpha_180]) if De2 <= 360.0: fc = friction_factor_curved(Re=Re, Di=Di, Dc=2.0*rc, roughness=roughness, Rec_method='Srinivasan', laminar_method='White', turbulent_method='Srinivasan turbulent') K = 0.0175*alpha*fc*angle*rc/Di else: K = 0.00431*alpha*angle*Re**-0.17*(rc/Di)**0.84 return K crane_standard_bend_angles = [45.0, 90.0, 180.0] crane_standard_bend_losses = [16.0, 30.0, 50.0] bend_rounded_methods = ['Rennels', 'Crane', 'Crane standard', 'Miller', 'Swamee', 'Ito'] bend_rounded_method_unknown = 'Specified method not recognized; methods are %s' %(bend_rounded_methods)
[docs]def bend_rounded(Di, angle, fd=None, rc=None, bend_diameters=None, Re=None, roughness=0.0, L_unimpeded=None, method='Rennels'): r'''Returns loss coefficient for rounded bend in a pipe of diameter `Di`, `angle`, with a specified either radius of curvature `rc` or curvature defined by `bend_diameters`, Reynolds number `Re` and optionally pipe roughness, unimpeded length downstrean, and with the specified method. This calculation has six methods available. It is hard to describe one method as more conservative than another as depending on the conditions, the relative results change significantly. The 'Miller' method is the most complicated and slowest method; the 'Ito' method comprehensive as well and a source of original data, and the primary basis for the 'Rennels' method. The 'Swamee' method is very simple and generally does not match the other methods. The 'Crane' method may match or not match other methods depending on the inputs. There is also a 'Crane standard' method for use with threaded fittings which have higher pressure drops. It is a linear interpolation of values at angles of 45, 90, and 180 degrees. The Rennels [1]_ formula is: .. math:: K = f\alpha\frac{r}{d} + (0.10 + 2.4f)\sin(\alpha/2) + \frac{6.6f(\sqrt{\sin(\alpha/2)}+\sin(\alpha/2))} {(r/d)^{\frac{4\alpha}{\pi}}} The Swamee [5]_ formula is: .. math:: K = \left[0.0733 + 0.923 \left(\frac{d}{rc}\right)^{3.5} \right] \theta^{0.5} .. figure:: fittings/bend_rounded.png :scale: 30 % :alt: rounded bend; after [1]_ Parameters ---------- Di : float Inside diameter of pipe, [m] angle : float Angle of bend, [degrees] fd : float, optional Darcy friction factor; used only in Rennels method; calculated if not provided from Reynolds number, diameter, and roughness [-] rc : float, optional Radius of curvature of the entrance, optional [m] bend_diameters : float, optional (used if rc not provided) Number of diameters of pipe making up the bend radius [-] Re : float, optional Reynolds number of the pipe (used in Miller, Ito methods primarily, and Rennels method if no friction factor given), [-] roughness : float, optional Roughness of bend wall (used in Miller, Ito methods primarily, and Rennels method if no friction factor given), [m] L_unimpeded : float, optional The length of unimpeded pipe without any fittings, instrumentation, or flow disturbances downstream (assumed 20 diameters if not specified); used only in Miller method, [m] method : str, optional One of 'Rennels', 'Miller', 'Crane', 'Crane standard', 'Ito', or 'Swamee', [-] Returns ------- K : float Loss coefficient [-] Notes ----- When inputting bend diameters, note that manufacturers often specify this as a multiplier of nominal diameter, which is different than actual diameter. Those require that rc be specified. In the 'Rennels' method, `rc` is limited to 0.5 or above; which represents a sharp, square, inner edge - and an outer bend radius of 1.0. Losses are at a minimum when this value is large. Its first term represents surface friction loss; the second, secondary flows; and the third, flow separation. It encompasses the entire range of elbow and pipe bend configurations. It was developed for bend angles between 0 and 180 degrees; and r/D ratios above 0.5. Only smooth pipe data was used in its development. Note the loss coefficient includes the surface friction of the pipe as if it was straight. Examples -------- >>> bend_rounded(Di=4.020, rc=4.0*5, angle=30, Re=1E5) 0.11519070808085191 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. .. [3] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. .. [4] Swamee, Prabhata K., and Ashok K. Sharma. Design of Water Supply Pipe Networks. John Wiley & Sons, 2008. .. [5] Itō, H."Pressure Losses in Smooth Pipe Bends." Journal of Fluids Engineering 82, no. 1 (March 1, 1960): 131-40. doi:10.1115/1.3662501 .. [6] Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984. ''' if method is None: method = 'Rennels' if bend_diameters is None and rc is None: bend_diameters = 5.0 if rc is None: rc = Di*bend_diameters if method == 'Rennels': angle = radians(angle) if fd is None: if Re is None: raise ValueError("The `Rennels` method requires either a " "specified friction factor or `Re`") fd = Clamond(Re=Re, eD=roughness/Di, fast=False) sin_term = sin(0.5*angle) return (fd*angle*rc/Di + (0.10 + 2.4*fd)*sin_term + 6.6*fd*(sqrt(sin_term) + sin_term)/(rc/Di)**(4.*angle/pi)) elif method == 'Miller': if Re is None: raise ValueError('Miller method requires Reynolds number') return bend_rounded_Miller(Di=Di, angle=angle, Re=Re, rc=rc, bend_diameters=bend_diameters, roughness=roughness, L_unimpeded=L_unimpeded) elif method == 'Crane': return bend_rounded_Crane(Di=Di, angle=angle, rc=rc, bend_diameters=bend_diameters) elif method == 'Crane standard': return ft_Crane(Di)*interp(angle, crane_standard_bend_angles, crane_standard_bend_losses, extrapolate=True) elif method == 'Ito': if Re is None: raise ValueError("The `Iso` method requires`Re`") return bend_rounded_Ito(Di=Di, angle=angle, Re=Re, rc=rc, bend_diameters=bend_diameters, roughness=roughness) elif method == 'Swamee': return (0.0733 + 0.923*(Di/rc)**3.5)*sqrt(radians(angle)) else: raise ValueError(bend_rounded_method_unknown)
bend_miter_Miller_coeffs = [-12.050299402650126, -4.472433689233185, 50.51478860493546, 18.246302079077196, -84.61426660754049, -28.9340865412371, 71.07345367553872, 21.354010992349565, -30.239604839338, -5.855129345095336, 5.465131779316523, -1.0881363712712555, -0.3635431075401224, 0.5120065303391261, 0.46818214491579246, 0.9789177645343993, 0.5080285124448385]
[docs]def bend_miter_Miller(Di, angle, Re, roughness=0.0, L_unimpeded=None): r'''Calculates the loss coefficient for a single miter bend according to Miller [1]_. This is a sophisticated model which uses corrections for pipe roughness, the length of the pipe downstream before another interruption, and a correction for Reynolds number. It interpolates several times using several corrections graphs in [1]_. Parameters ---------- Di : float Inside diameter of pipe, [m] angle : float Angle of miter bend, [degrees] Re : float Reynolds number of the pipe (no specification if inlet or outlet properties should be used), [m] roughness : float, optional Roughness of bend wall, [m] L_unimpeded : float, optional The length of unimpeded pipe without any fittings, instrumentation, or flow disturbances downstream (assumed 20 diameters if not specified), [m] Returns ------- K : float Loss coefficient [-] Notes ----- Note the loss coefficient includes the surface friction of the pipe as if it was straight. Examples -------- >>> bend_miter_Miller(Di=.6, angle=90, Re=2e6, roughness=2e-5, ... L_unimpeded=30*.6) 1.1921574594947664 References ---------- .. [1] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. ''' if L_unimpeded is None: L_unimpeded = 20.0*Di if angle > 120.0: angle = 120.0 Kb = horner(bend_miter_Miller_coeffs, 1.0/60.0*(angle-60.0)) C_o = Miller_bend_unimpeded_correction(Kb=Kb, Di=Di, L_unimpeded=L_unimpeded) C_roughness = Miller_bend_roughness_correction(Re=Re, Di=Di, roughness=roughness) Re_C_Re = min(max(Re, 1E4), 1E8) C_Re_1 = bend_rounded_Miller_C_Re(Re_C_Re, 1.0) if Re_C_Re < 207956.58904584477 else 1.0 C_Re = Kb/(Kb - 0.2*C_Re_1 + 0.2) if C_Re > 2.2 or C_Re < 0: C_Re = 2.2 return Kb*C_Re*C_roughness*C_o
bend_miter_Crane_angles = [0.0, 15.0, 30.0, 45.0, 60.0, 75.0, 90.0] bend_miter_Crane_fds = [2.0, 4.0, 8.0, 15.0, 25.0, 40.0, 60.0] bend_miter_Blevins_angles = [0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 120.0] bend_miter_Blevins_Ks = [0.0, .025, .055, .1, .2, .35, .5, .7, .9, 1.1, 1.5] bend_miter_methods = ['Rennels', 'Miller', 'Crane', 'Blevins'] bend_miter_method_unknown_msg = 'Specified method not recognized; methods are %s' %(bend_miter_methods)
[docs]def bend_miter(angle, Di=None, Re=None, roughness=0.0, L_unimpeded=None, method='Rennels'): r'''Returns loss coefficient for any single-joint miter bend in a pipe of angle `angle`, diameter `Di`, Reynolds number `Re`, roughness `roughness` unimpeded downstream length `L_unimpeded`, and using the specified method. This calculation has four methods available. The 'Rennels' method is based on a formula and extends to angles up to 150 degrees. The 'Crane' method extends only to 90 degrees; the 'Miller' and 'Blevins' methods extend to 120 degrees. The Rennels [1]_ formula is: .. math:: K = 0.42\sin(\alpha/2) + 2.56\sin^3(\alpha/2) The 'Crane', 'Miller', and 'Blevins' methods are all in part graph or tabular based and do not have straightforward formulas. .. figure:: fittings/bend_miter.png :scale: 25 % :alt: Miter bend, one joint only; after [1]_ Parameters ---------- angle : float Angle of bend, [degrees] Di : float, optional Inside diameter of pipe, [m] Re : float, optional Reynolds number of the pipe (no specification if inlet or outlet properties should be used), [-] roughness : float, optional Roughness of bend wall, [m] L_unimpeded : float, optional The length of unimpeded pipe without any fittings, instrumentation, or flow disturbances downstream (assumed 20 diameters if not specified), [m] method : str, optional The specified method to use; one of 'Rennels', 'Miller', 'Crane', or 'Blevins', [-] Returns ------- K : float Loss coefficient with respect to either upstream or downstream diameter, [-] Notes ----- This method is designed only for single-jointed miter bends. It is common for miter bends to have two or three sections, to further reduce the loss coefficient. Some methods exist in [2]_ for taking this into account. Because the additional configurations reduce the pressure loss, it is "common practice" to simply ignore their effect and accept the slight overdesign. The following figure illustrates the different methods. .. plot:: plots/bend_miter_plot.py Examples -------- >>> bend_miter(150) 2.7128147734758103 >>> bend_miter(Di=.6, angle=45, Re=1e6, roughness=1e-5, L_unimpeded=20, ... method='Miller') 0.2944060416245169 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. .. [3] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. .. [4] Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984. ''' if method is None: method = 'Rennels' if method == 'Rennels': angle_rad = radians(angle) sin_half_angle = sin(angle_rad*0.5) return 0.42*sin_half_angle + 2.56*sin_half_angle*sin_half_angle*sin_half_angle elif method == 'Crane': factor = interp(angle, bend_miter_Crane_angles, bend_miter_Crane_fds) return ft_Crane(Di)*factor elif method == 'Miller': return bend_miter_Miller(Di=Di, angle=angle, Re=Re, roughness=roughness, L_unimpeded=L_unimpeded) elif method == 'Blevins': # data from Idelchik, Miller, an earlier ASME publication # For 90-120 degrees, a polynomial/spline would be better than a linear fit K_base = interp(angle, bend_miter_Blevins_angles, bend_miter_Blevins_Ks) return K_base*(2E5/Re)**0.2 else: raise ValueError(bend_miter_method_unknown_msg)
[docs]def helix(Di, rs, pitch, N, fd): r'''Returns loss coefficient for any size constant-pitch helix as shown in [1]_. Has applications in immersed coils in tanks. .. math:: K = N \left[f\frac{\sqrt{(2\pi r)^2 + p^2}}{d} + 0.20 + 4.8 f\right] Parameters ---------- Di : float Inside diameter of pipe, [m] rs : float Radius of spiral, [m] pitch : float Distance between two subsequent coil centers, [m] N : float Number of coils in the helix [-] fd : float Darcy friction factor [-] Returns ------- K : float Loss coefficient [-] Notes ----- Formulation based on peak secondary flow as in two 180 degree bends per coil. Flow separation ignored. No f, Re, geometry limitations. Source not compared against others. Examples -------- >>> helix(Di=0.01, rs=0.1, pitch=.03, N=10, fd=.0185) 14.525134924495514 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. ''' return N*(fd*sqrt((2*pi*rs)**2 + pitch**2)/Di + 0.20 + 4.8*fd)
[docs]def spiral(Di, rmax, rmin, pitch, fd): r'''Returns loss coefficient for any size constant-pitch spiral as shown in [1]_. Has applications in immersed coils in tanks. .. math:: K = \frac{r_{max} - r_{min}}{p} \left[ f\pi\left(\frac{r_{max} +r_{min}}{d}\right) + 0.20 + 4.8f\right] + \frac{13.2f}{(r_{min}/d)^2} Parameters ---------- Di : float Inside diameter of pipe, [m] rmax : float Radius of spiral at extremity, [m] rmin : float Radius of spiral at end near center, [m] pitch : float Distance between two subsequent coil centers, [m] fd : float Darcy friction factor [-] Returns ------- K : float Loss coefficient [-] Notes ----- Source not compared against others. Examples -------- >>> spiral(Di=0.01, rmax=.1, rmin=.02, pitch=.01, fd=0.0185) 7.950918552775473 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. ''' return (rmax-rmin)/pitch*(fd*pi*(rmax+rmin)/Di + 0.20 + 4.8*fd) + 13.2*fd/(rmin/Di)**2
### Contractions tck_contraction_abrupt_Miller = implementation_optimize_tck([ [0.0, 0.0, 0.0, 0.0, 0.5553844358576507, 0.7193937784550933, 0.8144518359319883, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.008318525134414716, 0.03421785904690331, 0.1, 0.1, 0.1, 0.1], [0.4994829280256306, 0.4879234090312588, 0.4255534701302917, 0.13986792857000196, 0.18065199312360336, 0.08701863105570044, 0.440886271558411, 0.4243716649409474, 0.36030826702480984, 0.2117960027770777, 0.11248601502220595, 0.08616608643911047, 0.4018850813314268, 0.3706136100344715, 0.26368725187530173, 0.15316562777200723, 0.09856904494833027, 0.08399367477431015, 0.17005190739488515, 0.16023910724406945, 0.1242906181281536, 0.06137573180850665, 0.05726821990215439, 0.04684229988854647, 0.03922553704852396, 0.036955938945600654, 0.029450340285188167, 0.028656302938315878, 0.019588760093397686, 0.01950497484044149, 0.006447273360860872, 0.006569278508667471, 0.0053786079483153885, -0.013158950566037957, 0.010870991979047888, 0.0015100946100218284, -0.0005221250682760256, -0.0006447517875307877, -0.0007846123907797336, 0.0024459067063225485, -0.0019102888752274472, -0.0001356300464508266], 3, 3])
[docs]def contraction_round_Miller(Di1, Di2, rc): r'''Returns loss coefficient for any round edged pipe contraction using the method of Miller [1]_. This method uses a spline fit to a graph with area ratios 0 to 1, and radius ratios (rc/Di2) from 0.1 to 0. Parameters ---------- Di1 : float Inside diameter of original pipe, [m] Di2 : float Inside diameter of following pipe, [m] rc : float Radius of curvature of the contraction, [m] Returns ------- K : float Loss coefficient in terms of the following pipe, [-] Notes ----- This method normally gives lower losses than the Rennels formulation. Examples -------- >>> contraction_round_Miller(Di1=1, Di2=0.4, rc=0.04) 0.08565953051298639 References ---------- .. [1] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. ''' A_ratio = Di2*Di2/(Di1*Di1) radius_ratio = rc/Di2 if radius_ratio > 0.1: radius_ratio = 0.1 Ks = float(bisplev(A_ratio, radius_ratio, tck_contraction_abrupt_Miller)) # For some near-1 ratios, can get negative Ks due to the spline. if Ks < 0.0: Ks = 0.0 return Ks
contraction_sharp_methods = ['Rennels', 'Hooper', 'Crane'] contraction_sharp_method_unknown = 'Specified method not recognized; methods are %s' %(contraction_sharp_methods)
[docs]def contraction_sharp(Di1, Di2, fd=None, Re=None, roughness=0.0, method='Rennels'): r'''Returns loss coefficient for a sharp edged pipe contraction. This calculation has two methods available. The 'Rennels' [2]_ method is a fit for turbulent regimes, while the `Hooper` method is more complicated and claims to have full dependence on `Re` including a laminar transition at `Re` of 2500 (based on the original pipe diameter). The Rennels [1]_ formulas are: .. math:: K_1 = 0.0696(1-\beta^5)\lambda^2 + (\lambda-1)^2 .. math:: \lambda = 1 + 0.622(1-0.215\beta^2 - 0.785\beta^5) .. math:: \beta = d_2/d_1 The Hooper [1]_ formulas are: If :math:`{Re}_1 \le 2500`: .. math:: K_1 = \left[1.2 + \frac{160}{\text{Re}_1}\right] \left[ \left(\frac{D_1} {D_2} \right)^4 -1 \right] If :math:`{Re}_1 > 2500`: .. math:: K_1 = \left[0.6 + 0.48f_1\right] \left(\frac{D_1} {D_2} \right)^2 \left[ \left(\frac{D_1} {D_2} \right)^2 -1 \right] Converting the loss coefficient to a consistent basis: .. math:: K_2 = K_1\frac{D_2^4}{D_1^4} For the Crane formula see `contraction_conical_Crane` with a length of zero. .. figure:: fittings/contraction_sharp.png :scale: 40 % :alt: Sharp contraction Parameters ---------- Di1 : float Inside diameter of original (larger) pipe, [m] Di2 : float Inside diameter of following (smaller) pipe, [m] fd : float, optional Darcy friction factor in original pipe; used only in the Hooper method and will be calculated from `Re` if not given, [-] Re : float, optional Reynolds number of the pipe (used in Hooper method, [m] roughness : float, optional Roughness of original pipe (used in Hooper method only if no friction factor given), [m] method : str The calculation method to use; one of 'Hooper', 'Rennels', or 'Crane' [-] Returns ------- K : float Loss coefficient in terms of the following pipe [-] Notes ----- A value of 0.506 or simply 0.5 is often used. Examples -------- >>> contraction_sharp(Di1=1, Di2=0.4) 0.5301269161 >>> contraction_sharp(Di1=1, Di2=0.4, Re=1e5, method='Hooper') 0.5112534765 The Hooper method supports laminar flow, while `Rennels` is not even `Re` aware. >>> contraction_sharp(Di1=1, Di2=0.4, Re=1e3, method='Hooper') 1.325184 Crane offers similar results: >>> contraction_sharp(3.0, 2.0, method='Crane') 0.2777777 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Hooper, William B. "Calculate Head Loss Caused by Change in Pipe Size." Chemical Engineering 95, no. 16 (November 7, 1988): 89. ''' if method == 'Rennels': beta = Di2/Di1 beta2 = beta*beta beta5 = beta2*beta2*beta lbd = 1.0 + 0.622*(1.0 - 0.215*beta2 - 0.785*beta5) return 0.0696*(1.0 - beta5)*lbd*lbd + (lbd - 1.0)*(lbd - 1.0) elif method == 'Hooper': if Re is None: raise ValueError("Hooper method requires `Re`") D1_D2 = Di1/Di2 D1_D2_2 = D1_D2*D1_D2 if Re <= 2500.0: K = (1.2 + 160.0/Re)*(D1_D2_2*D1_D2_2 - 1.0) else: if fd is None: fd = Clamond(Re=Re, eD=roughness/Di1) K = (0.6 + 0.48*fd)*D1_D2_2*(D1_D2_2 - 1.0) K = change_K_basis(K, Di1, Di2) return K elif method == 'Crane': return contraction_conical_Crane(Di1, Di2, l=0.0) else: raise ValueError(contraction_sharp_method_unknown)
contraction_round_Idelchik_ratios = [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.12, 0.16, 0.2] contraction_round_Idelchik_factors = [0.5, 0.43, 0.37, 0.31, 0.26, 0.22, 0.20, 0.15, 0.09, 0.06, 0.03] # Third factor is 0.36 in 1960 edition, 0.37 in Design Guide contraction_round_methods = ['Rennels', 'Miller', 'Idelchik'] contraction_round_unknown_method = 'Specified method not recognized; methods are %s' %(contraction_round_methods)
[docs]def contraction_round(Di1, Di2, rc, method='Rennels'): r'''Returns loss coefficient for any any round edged pipe contraction. This calculation has three methods available. The 'Miller' [2]_ method is a bivariate spline digitization of a graph; the 'Idelchik' [3]_ method is an interpolation using a formula and a table of values. The most conservative formulation is that of Rennels; with fairly similar. The 'Idelchik' method is more conservative and less complex; it offers a straight-line curve where the others curves are curved. The Rennels [1]_ formulas are: .. math:: K = 0.0696\left(1 - 0.569\frac{r}{d_2}\right)\left(1-\sqrt{\frac{r} {d_2}}\beta\right)(1-\beta^5)\lambda^2 + (\lambda-1)^2 .. math:: \lambda = 1 + 0.622\left(1 - 0.30\sqrt{\frac{r}{d_2}} - 0.70\frac{r}{d_2}\right)^4 (1-0.215\beta^2-0.785\beta^5) .. math:: \beta = d_2/d_1 .. figure:: fittings/contraction_round.png :scale: 30 % :alt: Circular round contraction; after [1]_ Parameters ---------- Di1 : float Inside diameter of original pipe, [m] Di2 : float Inside diameter of following pipe, [m] rc : float Radius of curvature of the contraction, [m] method : str The calculation method to use; one of 'Rennels', 'Miller', or 'Idelchik', [-] Returns ------- K : float Loss coefficient in terms of the following pipe [-] Notes ----- Rounding radius larger than 0.14Di2 prevents flow separation from the wall. Further increase in rounding radius continues to reduce loss coefficient. .. plot:: plots/contraction_round_plot.py Examples -------- >>> contraction_round(Di1=1, Di2=0.4, rc=0.04) 0.1783332490866574 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. .. [3] Idel`chik, I. E. Handbook of Hydraulic Resistance: Coefficients of Local Resistance and of Friction (Spravochnik Po Gidravlicheskim Soprotivleniyam, Koeffitsienty Mestnykh Soprotivlenii i Soprotivleniya Treniya). National technical information Service, 1966. ''' beta = Di2/Di1 if method is None: method = 'Rennels' if method == 'Rennels': lbd = 1.0 + 0.622*(1.0 - 0.30*sqrt(rc/Di2) - 0.70*rc/Di2)**4*(1.0 - 0.215*beta**2 - 0.785*beta**5) return 0.0696*(1.0 - 0.569*rc/Di2)*(1.0 - sqrt(rc/Di2)*beta)*(1.0 - beta**5)*lbd*lbd + (lbd - 1.0)**2 elif method == 'Miller': return contraction_round_Miller(Di1=Di1, Di2=Di2, rc=rc) elif method == 'Idelchik': # Di2, ratio defined in terms over diameter K0 = interp(rc/Di2, contraction_round_Idelchik_ratios, contraction_round_Idelchik_factors) return K0*(1.0 - beta*beta) else: raise ValueError(contraction_round_unknown_method)
[docs]def contraction_conical_Crane(Di1, Di2, l=None, angle=None): r'''Returns loss coefficient for a conical pipe contraction as shown in Crane TP 410M [1]_ between 0 and 180 degrees. If :math:`\theta < 45^{\circ}`: .. math:: K_2 = {0.8 \sin \frac{\theta}{2}(1 - \beta^2)} otherwise: .. math:: K_2 = {0.5\sqrt{\sin \frac{\theta}{2}} (1 - \beta^2)} .. math:: \beta = d_2/d_1 Parameters ---------- Di1 : float Inside pipe diameter of the larger, upstream, pipe, [m] Di2 : float Inside pipe diameter of the smaller, downstream, pipe, [m] l : float, optional Length of the contraction [m] angle : float, optional Angle of contraction [degrees] Returns ------- K : float Loss coefficient in terms of the following (smaller) pipe [-] Notes ----- Cheap and has substantial impact on pressure drop. Note that the nomenclature in [1]_ is somewhat different - the smaller pipe is called 1, and the larger pipe is called 2; and so the beta ratio is reversed, and the fourth power of beta used in their equation is not necessary. Examples -------- >>> contraction_conical_Crane(Di1=0.0779, Di2=0.0525, l=0) 0.2729017979998056 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if l is not None: if l == 0.0: angle_rad = pi else: angle_rad = 2.0*atan((Di1-Di2)/(2.0*l)) elif angle is not None: angle_rad = deg2rad*angle #l = (Di1 - Di2)/(2.0*tan(0.5*angle)) # L is not needed in this calculation else: raise ValueError('One of `l` or `angle` must be specified') beta = Di2/Di1 beta2 = beta*beta if angle_rad < 0.25*pi: # Formula 1 K2 = 0.8*sin(0.5*angle_rad)*(1.0 - beta2) else: # Formula 2 K2 = 0.5*(sqrt(sin(0.5*angle_rad))*(1.0 - beta2)) return K2
contraction_conical_angles_Idelchik = [2, 3, 6, 8, 10, 12, 14, 16, 20] contraction_conical_A_ratios_Idelchik = [0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6] contraction_conical_friction_Idelchik = [ [0.14, 0.1, 0.05, 0.04, 0.03, 0.03, 0.02, 0.02, 0.01], [0.14, 0.1, 0.05, 0.04, 0.03, 0.02, 0.02, 0.02, 0.01], [0.14, 0.1, 0.05, 0.04, 0.03, 0.02, 0.02, 0.02, 0.01], [0.14, 0.1, 0.05, 0.04, 0.03, 0.02, 0.02, 0.02, 0.01], [0.14, 0.1, 0.05, 0.03, 0.03, 0.02, 0.02, 0.02, 0.01], [0.14, 0.1, 0.05, 0.03, 0.03, 0.02, 0.02, 0.02, 0.01], [0.13, 0.09, 0.04, 0.03, 0.03, 0.02, 0.02, 0.02, 0.01], [0.12, 0.08, 0.04, 0.03, 0.02, 0.02, 0.02, 0.02, 0.01], [0.11, 0.07, 0.04, 0.03, 0.02, 0.02, 0.02, 0.02, 0.01], [0.09, 0.06, 0.03, 0.02, 0.02, 0.02, 0.02, 0.02, 0.01]] contraction_conical_frction_Idelchik_tck = tck_interp2d_linear(contraction_conical_angles_Idelchik, contraction_conical_A_ratios_Idelchik, contraction_conical_friction_Idelchik, kx=1, ky=1) contraction_conical_frction_Idelchik_obj = lambda x, y : float(bisplev(x, y, contraction_conical_frction_Idelchik_tck)) contraction_conical_l_ratios_Blevins = [0.0, 0.05, 0.1, 0.15, 0.6] contraction_conical_A_ratios_Blevins = [1.2, 1.5, 2.0, 3.0, 5.0, 10.0] contraction_conical_Ks_Blevins = [[.08, .06, .04, .03, .03], [.17, .12, .09, .07, .06], [.25, .23, .17, .14, .06], [.33, .31, .27, .23, .08], [.4, .38, .35, .31, .18], [.45, .45, .41, .39, .27]] contraction_conical_Blevins_tck = tck_interp2d_linear(contraction_conical_l_ratios_Blevins, contraction_conical_A_ratios_Blevins, contraction_conical_Ks_Blevins, kx=1, ky=1) contraction_conical_Blevins_obj = lambda x, y: float(bisplev(x, y, contraction_conical_Blevins_tck)) contraction_conical_Miller_tck = implementation_optimize_tck([ [ -2.2990613088204293, -2.2990613088204293, -2.2990613088204293, -2.2990613088204293, -1.9345621970869704, -1.404550366067981, -1.1205580332553446, -0.7202074014540876, -0.18305354619604816, 0.5791478950190209, 1.2576636025381396, 2.2907351590368092, 2.2907351590368092, 2.2907351590368092, 2.2907351590368092], [ 0.09564194294666524, 0.09564194294666524, 0.17553288711543455, 0.263895293813645, 0.3890819147022019, 0.46277323951998217, 0.5504296236707121, 0.7265657737596892, 1.0772357648098938, 1.2566022106161683, 1.3896885941879062, 1.3896885941879062], [ -0.019518693251672135, 0.04439613867473242, 0.11549650174721836, 0.21325506677861075, 0.268179723158688, 0.31125301421509866, 0.38394595875289805, 0.4808287074532006, 0.5205981039085685, 0.5444079315893322, -0.016435668699253902, 0.036132755789022385, 0.09344296094392814, 0.18264727448046977, 0.23460506265914166, 0.2772896726095435, 0.3475409775384636, 0.45339837219176454, 0.49766916609817535, 0.533981552804865, -0.006524265764454468, 0.024107195694715193, 0.05862956870028131, 0.12122104285943507, 0.17207312024278762, 0.2175356288866053, 0.282297563080016, 0.3995008583081823, 0.4563724107887528, 0.5175856070810377, 0.00971345082784277, 0.025981390544674948, 0.0438578322196561, 0.08103403101086341, 0.11351528283253318, 0.16873088559958743, 0.2347695003589526, 0.3428907161435351, 0.42017998591926276, 0.49784770602295325, 0.022572122504756167, 0.0277671279384801, 0.033512283408629495, 0.05470423531298454, 0.06485563480390757, 0.10483763206962131, 0.1802208799223503, 0.29075723837012296, 0.35502824385155335, 0.4460106883062252, 0.030312717163327077, 0.03080869253188484, 0.03583128286874324, 0.04627567520803308, 0.050501484562613955, 0.05683263025468022, 0.12297253802915259, 0.2415222338797251, 0.3025777968736861, 0.3724407040165538, 0.03115993727503623, 0.03443665864698284, 0.03574452046031886, 0.03995718256281492, 0.04759698369059247, 0.050404788737262694, 0.052375330859925545, 0.1356057568743366, 0.20463667731329582, 0.26043914743762864, 0.02844193432840707, 0.0219797618956514, 0.013352154001094038, 0.018393840217638825, 0.02448602185526976, 0.038812331325140816, 0.0522197430071833, 0.057132169238281294, 0.06871138075102912, 0.09334527259294226, 0.04089985439478869, 0.07148502476706058, 0.06750266344761692, 0.038560772865945815, 0.020172054809734774, 0.01596047961326318, 0.033338955878272625, 0.058808731166289874, 0.055802602927507314, 0.025265841939291166, 0.11200365568168691, 0.11945663812857424, 0.10673570013847415, 0.07758458179796549, 0.055266607234870514, 0.03072901347153607, 0.025790727504652375, 0.037031664564632104, 0.0601306808668177, 0.07612350738135039, 0.0964900248905913, 0.11088549072803407, 0.10778442024110846, 0.09386482850507959, 0.06940476627270852, 0.04434507143623664, 0.03331958878624311, 0.01854072032522763, 0.027553821071285824, 0.045426686375783926], 3, 1]) contraction_conical_Miller_obj = lambda l_r2, A_ratio: max(min(float(bisplev(log(l_r2), log(A_ratio), contraction_conical_Miller_tck)), .5), 0) contraction_conical_methods = ['Rennels', 'Idelchik', 'Crane', 'Swamee', 'Blevins', 'Miller', 'Hooper'] contraction_conical_method_unknown = 'Specified method not recognized; methods are %s' %(contraction_conical_methods)
[docs]def contraction_conical(Di1, Di2, fd=None, l=None, angle=None, Re=None, roughness=0.0, method='Rennels'): r'''Returns the loss coefficient for any conical pipe contraction. This calculation has five methods available. The 'Idelchik' [2]_ and 'Blevins' [3]_ methods use interpolation among tables of values; 'Miller' uses a 2d spline representation of a graph; and the 'Rennels' [1]_, 'Crane' [4]_, 'Swamee' [5]_ and 'Hooper' methods use formulas for their calculations. The 'Rennels' [1]_ formulas are: .. math:: K_2 = K_{fr,2} + K_{conv,2} .. math:: K_{fr,2} = \frac{f_d ({1 - \beta^4})}{8\sin(\theta/2)} .. math:: K_{conv,2} = 0.0696[1+C_B(\sin(\alpha/2)-1)](1-\beta^5)\lambda^2 + (\lambda-1)^2 .. math:: \lambda = 1 + 0.622(\alpha/180)^{0.8}(1-0.215\beta^2-0.785\beta^5) .. math:: \beta = d_2/d_1 The 'Swamee' [5]_ formula is: .. math:: K = 0.315 \theta^{1/3} The Hooper [7]_ formulas are: If :math:`{Re}_1 \le 2500`: .. math:: K_{1,sharp} = \left[1.2 + \frac{160}{\text{Re}_1}\right] \left[ \left(\frac{D_1} {D_2} \right)^4 -1 \right] If :math:`{Re}_1 > 2500`: .. math:: K_{1,sharp} = \left[0.6 + 0.48f_1\right] \left(\frac{D_1} {D_2} \right)^2 \left[ \left(\frac{D_1} {D_2} \right)^2 -1 \right] In both cases, a multiplier is added for the angle: For angles between 45 and 180 degrees: .. math:: K_1 = K_{1,sharp} \sqrt{\sin \frac{\theta}{2}} For angles between 0 and 45 degrees: .. math:: K_1 = K_{1,sharp} 1.6 \sin \frac{\theta}{2} Converting the Hooper loss coefficient to a consistent basis: .. math:: K_2 = K_1\frac{D_2^4}{D_1^4} .. figure:: fittings/contraction_conical.png :scale: 30 % :alt: contraction conical; after [1]_ Parameters ---------- Di1 : float Inside pipe diameter of the larger, upstream, pipe, [m] Di2 : float Inside pipe diameter of the smaller, downstream, pipe, [m] fd : float, optional Darcy friction factor; used only in the `Rennels` and `Hooper` method and will be calculated from `Re` and `roughness` if not given, [-] l : float, optional Length of the contraction, optional [m] angle : float, optional Angle of contraction (180 = sharp, 0 = infinitely long contraction), optional [degrees] Re : float, optional Reynolds number of the pipe (used in `Rennels` and `Hooper` method only if no friction factor given), [m] roughness : float, optional Roughness of bend wall (used in Rennel method if no friction factor given), [m] method : str, optional The method to use for the calculation; one of 'Rennels', 'Idelchik', 'Crane', 'Swamee' 'Hooper', 'Miller', or 'Blevins', [-] Returns ------- K : float Loss coefficient in terms of the following pipe [-] Notes ----- Cheap and has substantial impact on pressure drop. The 'Idelchik' method includes two tabular interpolations; its friction term is limited to angles between 2 and 20 degrees and area ratios 0.05 to 0.6, while its main term is limited to length over diameter ratios 0.025 to 0.6. This seems to give it high results for angles < 25 degrees. The 'Blevins' method is based on Idelchik data; it should not be used, because its data jumps around and its data is limited to area ratios .1 to 0.83, and length over diameter ratios 0 to 0.6. The 'Miller' method jumps around as well. Unlike most of Miller's method, there is no correction for Reynolds number. There is quite a bit of variance in the predictions of the methods, as demonstrated by the following figure. .. plot:: plots/contraction_conical_plot.py Examples -------- >>> contraction_conical(Di1=0.1, Di2=0.04, l=0.04, Re=1E6) 0.15639885880609544 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Idel`chik, I. E. Handbook of Hydraulic Resistance: Coefficients of Local Resistance and of Friction (Spravochnik Po Gidravlicheskim Soprotivleniyam, Koeffitsienty Mestnykh Soprotivlenii i Soprotivleniya Treniya). National technical information Service, 1966. .. [3] Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984. .. [4] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. .. [5] Swamee, Prabhata K., and Ashok K. Sharma. Design of Water Supply Pipe Networks. John Wiley & Sons, 2008. .. [6] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. .. [7] Hooper, William B. "Calculate Head Loss Caused by Change in Pipe Size." Chemical Engineering 95, no. 16 (November 7, 1988): 89. ''' beta = Di2/Di1 if angle is not None: angle_rad = angle*deg2rad l = (Di1 - Di2)/(2.0*tan(0.5*angle_rad)) elif l is not None: if l != 0.0: angle_rad = 2.0*atan((Di1-Di2)/(2.0*l)) else: angle_rad = pi else: raise ValueError('Either l or angle is required') if method == 'Rennels': if fd is None: if Re is None: raise ValueError("The `Rennels` method requires either a " "specified friction factor or `Re`") fd = Clamond(Re=Re, eD=roughness/Di2, fast=False) beta2 = beta*beta beta4 = beta2*beta2 beta5 = beta4*beta lbd = 1.0 + 0.622*(angle_rad/pi)**0.8*(1.0 - 0.215*beta2 - 0.785*beta5) sin_half_angle = sin(0.5*angle_rad) K_fr2 = fd*(1.0 - beta4)/(8.0*sin_half_angle) K_conv2 = 0.0696*sin_half_angle*(1.0 - beta5)*lbd*lbd + (lbd - 1.0)**2 return K_fr2 + K_conv2 elif method == 'Crane': return contraction_conical_Crane(Di1=Di1, Di2=Di2, l=l, angle=angle_rad*rad2deg) elif method == 'Swamee': return 0.315*angle_rad**(1.0/3.0) elif method == 'Idelchik': # Diagram 3-6; already digitized for beveled entrance K0 = float(bisplev(angle_rad*rad2deg, l/Di2, entrance_beveled_Idelchik_tck)) # Angles 0 to 20, ratios 0.05 to 0.06 if angle_rad > 20.0*deg2rad: angle_fric = 20.0 elif angle_rad < 2.0*deg2rad: angle_fric = 2.0 else: angle_fric = angle_rad*rad2deg A_ratio = A_ratio_fric = Di2*Di2/(Di1*Di1) if A_ratio_fric < 0.05: A_ratio_fric = 0.05 elif A_ratio_fric > 0.6: A_ratio_fric = 0.6 K_fr = float(contraction_conical_frction_Idelchik_obj(angle_fric, A_ratio_fric)) return K0*(1.0 - A_ratio) + K_fr elif method == 'Blevins': A_ratio = Di1*Di1/(Di2*Di2) if A_ratio < 1.2: A_ratio = 1.2 elif A_ratio > 10.0: A_ratio = 10.0 l_ratio = l/Di2 if l_ratio > 0.6: l_ratio = 0.6 return float(contraction_conical_Blevins_obj(l_ratio, A_ratio)) elif method == 'Miller': A_ratio = Di1*Di1/(Di2*Di2) if A_ratio > 4.0: A_ratio = 4.0 elif A_ratio < 1.1: A_ratio = 1.1 l_ratio = l/(Di2*0.5) if l_ratio < 0.1: l_ratio = 0.1 elif l_ratio > 10.0: l_ratio = 10.0 # Turning on ofr off the limits - little difference in plot return contraction_conical_Miller_obj(l_ratio, A_ratio) elif method == 'Hooper': if Re is None: raise ValueError("Hooper method requires `Re`") D1_D2 = Di1/Di2 D1_D2_2 = D1_D2*D1_D2 if Re <= 2500.0: K = (1.2 + 160.0/Re)*(D1_D2_2*D1_D2_2 - 1.0) else: if fd is None: fd = Clamond(Re=Re, eD=roughness/Di1) K = (0.6 + 0.48*fd)*D1_D2_2*(D1_D2_2 - 1.0) if angle_rad > 0.25*pi: K *= sqrt(sin(0.5*angle_rad)) else: K *= 1.6*sin(0.5*angle_rad) K = change_K_basis(K, Di1, Di2) return K else: raise ValueError(contraction_conical_method_unknown)
[docs]def contraction_beveled(Di1, Di2, l=None, angle=None): r'''Returns loss coefficient for any sharp beveled pipe contraction as shown in [1]_. .. math:: K = 0.0696[1+C_B(\sin(\alpha/2)-1)](1-\beta^5)\lambda^2 + (\lambda-1)^2 .. math:: \lambda = 1 + 0.622\left[1+C_B\left(\left(\frac{\alpha}{180} \right)^{0.8}-1\right)\right](1-0.215\beta^2-0.785\beta^5) .. math:: C_B = \frac{l}{d_2}\frac{2\beta\tan(\alpha/2)}{1-\beta} .. math:: \beta = d_2/d_1 .. figure:: fittings/contraction_beveled.png :scale: 30 % :alt: contraction beveled; after [1]_ Parameters ---------- Di1 : float Inside diameter of original pipe, [m] Di2 : float Inside diameter of following pipe, [m] l : float Length of the bevel along the pipe axis ,[m] angle : float Angle of bevel, [degrees] Returns ------- K : float Loss coefficient in terms of the following pipe [-] Notes ----- Examples -------- >>> contraction_beveled(Di1=0.5, Di2=0.1, l=.7*.1, angle=120) 0.40946469413070485 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. ''' angle = radians(angle) beta = Di2/Di1 CB = l/Di2*2.0*beta*tan(0.5*angle)/(1.0 - beta) beta2 = beta*beta beta5 = beta2*beta2*beta lbd = 1.0 + 0.622*(1.0 + CB*((angle/pi)**0.8 - 1.0))*(1.0 - 0.215*beta2 - 0.785*beta5) return 0.0696*(1.0 + CB*(sin(0.5*angle) - 1.0))*(1.0 - beta5)*lbd*lbd + (lbd-1.0)**2
### Expansions (diffusers) diffuser_sharp_methods = ['Rennels', 'Hooper'] diffuser_sharp_method_unknown = 'Specified method not recognized; methods are %s' %(diffuser_sharp_methods)
[docs]def diffuser_sharp(Di1, Di2, Re=None, fd=None, roughness=0.0, method='Rennels'): r'''Returns loss coefficient for any sudden pipe diameter expansion according to the specified method. The main theoretical formula is as follows, in [1]_ and in other sources and is implemented under the name `Rennels`. .. math:: K_2 = (1-\beta^2)^2 The Hooper [2]_ formulas are: If :math:`{Re}_1 \le 4000`: .. math:: K_1 = 2 \left[1 - \left( \frac{D_1}{D_2} \right)^4 \right] else: .. math:: K_1 = \left[1 + 0.8 f_{d,1}\right] \left\{ \left[1 - \left( \frac{D_1}{D_2}\right)^2 \right]^2 \right\} Parameters ---------- Di1 : float Inside diameter of original pipe (smaller), [m] Di2 : float Inside diameter of following pipe (larger), [m] Re : float, optional Reynolds number of the pipe for original (smaller) pipe, used in `Hooper` method [-] fd : float, optional Darcy friction factor for original (smaller) pipe [-] roughness : float, optional Roughness of pipe wall (used in `Hooper` method if no friction factor given), [m] method : str The method to use for the calculation; one of 'Rennels', 'Hooper' [-] Returns ------- K : float Loss coefficient with respect to the original (smaller) pipe [-] Notes ----- Highly accurate. Examples -------- >>> diffuser_sharp(Di1=.5, Di2=1) 0.5625 >>> diffuser_sharp(Di1=.5, Di2=1, Re=1e5, fd=1e-7, method='Hooper') 0.562500045 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Hooper, William B. "Calculate Head Loss Caused by Change in Pipe Size." Chemical Engineering 95, no. 16 (November 7, 1988): 89. ''' beta = Di1/Di2 if method == 'Rennels': r = 1.0 - beta*beta return r*r elif method == 'Hooper': if Re is None: raise ValueError("Method `Hooper` requires Reynolds number") if Re < 4000.0: return 2.0*(1.0 - beta*beta*beta*beta) # Not the same formula as Rennels if fd is None: fd = Clamond(Re=Re, eD=roughness/Di1) x = 1.0 - beta*beta return (1.0 + 0.8*fd)*x*x else: raise ValueError(diffuser_sharp_method_unknown)
def diffuser_conical_Crane(Di1, Di2, l=None, angle=None): beta = Di1/Di2 beta2 = beta*beta if angle is not None: angle_rad = radians(angle) angle_deg = angle elif l is not None: if l != 0.0: angle_rad = 2.0*atan((Di1-Di2)/(2.0*l)) angle_deg = degrees(angle_rad) else: angle_rad = pi angle_deg = 180.0 else: raise ValueError('Either `l` or `angle` must be specified') if angle_deg < 45.0: # Formula 3 K2 = 2.6*sin(0.5*angle_rad)*(1.0 - beta2)**2/(beta2*beta2) else: K2 = (1.0 - beta2)**2/(beta2*beta2) # formula 4 K1 = K2*beta2*beta2 # Standard has become using upstream diameter return K1 tck_diffuser_conical_Miller = implementation_optimize_tck([ [ -2.307004845727645, -2.307004845727645, -2.307004845727645, -2.307004845727645, -0.852533937110498, -0.08240363489988907, 0.5915927994712962, 0.8982804334259539, 1.2315822114127628, 1.5343291978351532, 1.9774792041044793, 2.990267368122924, 2.990267368122924, 2.990267368122924, 2.990267368122924 ], [ 0.15265175024859737, 0.15265175024859737, 0.15265175024859737, 0.15265175024859737, 0.40701687154729443, 0.6664564516122377, 0.8948974705226967, 1.0144777142876453, 1.0931592421107108, 1.1789561829062467, 1.3141101898631344, 1.4016433190574298, 1.4016433190574298, 1.4016433190574298, 1.4016433190574298 ], [ 0.06036297171599943, 0.08322477303304361, 0.1533018560180316, 0.23256231139725417, 0.3176212581983357, 0.40020914174974515, 0.4385944607898857, 0.5200344894492758, 0.6068491969006803, 0.5644812620968174, 0.5206931820307759, 0.05279258341151595, 0.06701886136626269, 0.15460022709300852, 0.22187392289400498, 0.3163189969211137, 0.40236602598664045, 0.44217477520553994, 0.5224439320660155, 0.5978399391103398, 0.6131809640282799, 0.6101286467987195, 0.05708355184742518, 0.06843627744908527, 0.08943713554460665, 0.2666074936578441, 0.3093579837678418, 0.3920305705167829, 0.44503141066730906, 0.5320996705995045, 0.5598015078960548, 0.9045290434928654, 1.1278543134986714, 0.004082132921064788, 0.08726673904790738, 0.05768023021275458, 0.2018006237954987, 0.31496483541908044, 0.3856708355645899, 0.4432173742517448, 0.5150555453757539, 0.5447727935474795, 0.8251456282600432, 0.996071097893787, -0.1110682037244921, 0.07314890991840513, 0.06176280023793122, 0.14210338139570033, 0.221133551530109, 0.34303500384378116, 0.40130996632027693, 0.49982098188910806, 0.5348917607889022, 0.6163719511180222, 0.6823385842053077, -0.2166378057986125, 0.03883937343819872, 0.06286476564404532, 0.10772310640543344, 0.16931893225970837, 0.22920155110345403, 0.32189134044934775, 0.4091523406543155, 0.5122997879847003, 0.5557259511248352, 0.5834892444785406, -0.2784258718931251, 0.01614983641474248, 0.06657175843926792, 0.06987287339424499, 0.11347683852709868, 0.18271325237542604, 0.24381226992585622, 0.33699751608726225, 0.4328543409526461, 0.4932084120786604, 0.5172902462503076, -0.3110304748285624, -0.02554857636053585, 0.04945754727786904, 0.06935393005092971, 0.05644398696176074, 0.08533241552366327, 0.15458680076525846, 0.24566876577901098, 0.35324686175439035, 0.4095605186012888, 0.4277661722408436, -0.27286175236092153, -0.15488345611240545, -0.09243246273089455, 0.03455782910023685, 0.0829563174865211, 0.05506682466210118, 0.07027248456489407, 0.13458355260751956, 0.21084209763905942, 0.2971705194724395, 0.3194829528180993, -0.08063077687005854, -0.4253397307338264, -0.6215191566655465, -0.29467521770312016, 0.018448009119198257, 0.08412326971799582, 0.08337420030229001, 0.131275821589702, 0.1623166890922024, 0.21352111168837065, 0.2394011632386149, 0.14484414802505116, -0.781141319195365, -1.4412452429263252, -0.6266583715858592, 0.019328251090708078, 0.07939124881757918, 0.07570115443982374, 0.10818570632561267, 0.14931529315415798, 0.1845260859797597, 0.1975713897205575 ], 3, 3 ]) diffuser_conical_Idelchik_angles = [3, 6, 8, 10, 12, 14, 16, 20, 24, 30, 40, 60, 90, 180] diffuser_conical_Idelchik_A_ratios = [0, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6] diffuser_conical_Idelchik_data = [ [0.03, 0.08, 0.11, 0.15, 0.19, 0.23, 0.27, 0.36, 0.47, 0.65, 0.92, 1.15, 1.1, 1.02], [0.03, 0.07, 0.1, 0.14, 0.16, 0.2, 0.24, 0.32, 0.42, 0.58, 0.83, 1.04, 0.99, 0.92], [0.03, 0.07, 0.09, 0.13, 0.16, 0.19, 0.23, 0.3, 0.4, 0.55, 0.79, 0.99, 0.95, 0.88], [0.03, 0.07, 0.09, 0.12, 0.15, 0.18, 0.22, 0.29, 0.38, 0.52, 0.75, 0.93, 0.89, 0.83], [0.02, 0.06, 0.08, 0.11, 0.14, 0.17, 0.2, 0.26, 0.34, 0.46, 0.67, 0.84, 0.79, 0.74], [0.02, 0.05, 0.07, 0.1, 0.12, 0.15, 0.17, 0.23, 0.3, 0.41, 0.59, 0.74, 0.7, 0.65], [0.02, 0.05, 0.06, 0.08, 0.1, 0.13, 0.15, 0.2, 0.26, 0.35, 0.47, 0.65, 0.62, 0.58], [0.02, 0.04, 0.05, 0.07, 0.09, 0.11, 0.13, 0.18, 0.23, 0.31, 0.4, 0.57, 0.54, 0.5], [0.01, 0.03, 0.04, 0.06, 0.07, 0.08, 0.1, 0.13, 0.17, 0.23, 0.33, 0.41, 0.39, 0.37], [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09, 0.12, 0.16, 0.23, 0.29, 0.28, 0.26], [0.01, 0.01, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.15, 0.18, 0.17, 0.16]] diffuser_conical_Idelchik_tck = implementation_optimize_tck([[0.0, 0.0, 0.0, 0.0, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.6, 0.6, 0.6, 0.6], [3.0, 3.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 20.0, 24.0, 30.0, 40.0, 60.0, 90.0, 180.0, 180.0], [0.03, 0.08000000000000002, 0.11, 0.15000000000000002, 0.19, 0.23000000000000004, 0.2700000000000001, 0.36000000000000004, 0.4700000000000001, 0.6500000000000001, 0.9200000000000003, 1.1499999999999997, 1.0999999999999999, 1.02, 0.031285899404876215, 0.06962481602354913, 0.12336980866449107, 0.1503712244832664, 0.14378748320215035, 0.20742060216292338, 0.24836000991873095, 0.35209826742177064, 0.43872500319959085, 0.6090878367568959, 0.8690773980930455, 1.0742803401164671, 1.0021612593588036, 0.9451655708069392, 0.028714100595123804, 0.06926407286533984, 0.08440796911328675, 0.1374065532945115, 0.17287918346451642, 0.19813495339263237, 0.23719554563682488, 0.301235065911563, 0.4134972190226316, 0.5698010521319933, 0.8164781574625106, 1.0379418821057562, 1.0011720739745302, 0.9192788736375066, 0.03171453253983491, 0.07116642136473203, 0.09282641155265463, 0.11549496597768823, 0.14338331093620021, 0.17489413621723082, 0.21614667989164066, 0.28946435656236014, 0.37330000426612064, 0.5104504490091938, 0.7371031974573926, 0.9040404534886205, 0.8645483458117367, 0.810220761075916, 0.01599798425801497, 0.0600112625583925, 0.07849171306072822, 0.11003185192295382, 0.14431407179880976, 0.1740127023740962, 0.20378359569975044, 0.2582633102962821, 0.33980922441927436, 0.45585837012862357, 0.6659720355794456, 0.8470955557688615, 0.7909107314263772, 0.7433823030652078, 0.021150220771741206, 0.04655749664043002, 0.0703397965060472, 0.10328500351954951, 0.11954655404108269, 0.1488787675177576, 0.1662463204709797, 0.231242192999296, 0.3007649420874127, 0.4151976547001982, 0.604782427849235, 0.7361883438919813, 0.6970812056056823, 0.6428823350611119, 0.019401132655020165, 0.053758750879887386, 0.06014910091508289, 0.07682813399884816, 0.09749971203685935, 0.13047222755487306, 0.1512311224163308, 0.19676791770653376, 0.2571310072310745, 0.3433510110705831, 0.45489825302361336, 0.6481510686632118, 0.6207644461508929, 0.5850883566903438, 0.02185995392589747, 0.033290416160064826, 0.045368699473134086, 0.06692723598046114, 0.08810622640302032, 0.10215235383204274, 0.1213618790128196, 0.17665887566391483, 0.2219043695740277, 0.3007473976664318, 0.37586666240054567, 0.5455594857191605, 0.5128931976706977, 0.4673228653399028, 1.2670378191600348e-05, 0.03091333375994541, 0.03916320044367654, 0.06214899426206778, 0.062121072502719726, 0.06871380729933241, 0.09367771591902911, 0.10605919242336995, 0.14532614492011708, 0.196826752842303, 0.32944561762761065, 0.340669205008426, 0.32703730722467556, 0.32918425374885374, 0.014993664810904203, 0.014543333120027308, 0.025418399778161738, 0.026425502868966118, 0.04393946374864015, 0.0556430963503338, 0.05566114204048549, 0.07947040378831506, 0.10483692753994148, 0.13908662357884857, 0.1752771911861948, 0.26216539749578693, 0.2564813463876624, 0.22290787312557322, 0.01, 0.01, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.15, 0.18, 0.17, 0.16], 3, 1]) diffuser_conical_Idelchik_obj = lambda x, y : float(bisplev(x, y, diffuser_conical_Idelchik_tck)) diffuser_conical_methods = ['Rennels', 'Crane', 'Miller', 'Swamee', 'Idelchik', 'Hooper'] diffuser_conical_method_unknown = 'Specified method not recognized; methods are %s' %(diffuser_conical_methods)
[docs]def diffuser_conical(Di1, Di2, l=None, angle=None, fd=None, Re=None, roughness=0.0, method='Rennels'): r'''Returns the loss coefficient for any conical pipe diffuser. This calculation has six methods available. The 'Rennels' [1]_ formulas are as follows (three different formulas are used, depending on the angle and the ratio of diameters): For 0 to 20 degrees, all aspect ratios: .. math:: K_1 = 8.30[\tan(\alpha/2)]^{1.75}(1-\beta^2)^2 + \frac{f(1-\beta^4)}{8\sin(\alpha/2)} For 20 to 60 degrees, beta < 0.5: .. math:: K_1 = \left\{1.366\sin\left[\frac{2\pi(\alpha-15^\circ)}{180}\right]^{0.5} - 0.170 - 3.28(0.0625-\beta^4)\sqrt{\frac{\alpha-20^\circ}{40^\circ}}\right\} (1-\beta^2)^2 + \frac{f(1-\beta^4)}{8\sin(\alpha/2)} For 20 to 60 degrees, beta >= 0.5: .. math:: K_1 = \left\{1.366\sin\left[\frac{2\pi(\alpha-15^\circ)}{180}\right]^{0.5} - 0.170 \right\}(1-\beta^2)^2 + \frac{f(1-\beta^4)}{8\sin(\alpha/2)} For 60 to 180 degrees, beta < 0.5: .. math:: K_1 = \left[1.205 - 3.28(0.0625-\beta^4)-12.8\beta^6\sqrt{\frac {\alpha-60^\circ}{120^\circ}}\right](1-\beta^2)^2 For 60 to 180 degrees, beta >= 0.5: .. math:: K_1 = \left[1.205 - 0.20\sqrt{\frac{\alpha-60^\circ}{120^\circ}} \right](1-\beta^2)^2 The Swamee [5]_ formula is: .. math:: K = \left\{\frac{0.25}{\theta^3}\left[1 + \frac{0.6}{r^{1.67}} \left(\frac{\pi-\theta}{\theta} \right) \right]^{0.533r - 2.6} \right\}^{-0.5} The Hooper [6]_ formulas are: If :math:`{Re}_1 \le 4000`: .. math:: K_{sharp} = 2 \left[1 - \left( \frac{D_1}{D_2} \right)^4 \right] else: .. math:: K_{sharp} = \left[1 + 0.8 f_{d,1}\right] \left\{ \left[1 - \left( \frac{D_1}{D_2}\right)^2 \right]^2 \right\} If the angle > 45 degrees, :math:`K = K_{sharp}` otherwise .. math:: K = 2.6 \sin \left(\frac{\theta}{2} \right)K_{sharp} .. figure:: fittings/diffuser_conical.png :scale: 60 % :alt: diffuser conical; after [1]_ Parameters ---------- Di1 : float Inside diameter of original pipe (smaller), [m] Di2 : float Inside diameter of following pipe (larger), [m] l : float, optional Length of the contraction along the pipe axis, optional, [m] angle : float, optional Angle of contraction, [degrees] fd : float, optional Darcy friction factor [-] Re : float, optional Reynolds number of the pipe (used in Rennels method only if no friction factor given), [m] roughness : float, optional Roughness of bend wall (used in Rennel method if no friction factor given), [m] method : str The method to use for the calculation; one of 'Rennels', 'Crane', 'Miller', 'Swamee', 'Idelchik', or 'Hooper' [-] Returns ------- K : float Loss coefficient with respect to smaller, upstream diameter [-] Notes ----- The Miller method changes around quite a bit. There is quite a bit of variance in the predictions of the methods, as demonstrated by the following figure. .. plot:: plots/diffuser_conical_plot.py Examples -------- >>> diffuser_conical(Di1=1/3., Di2=1.0, angle=50.0, Re=1E6) 0.8027721093415322 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Idel`chik, I. E. Handbook of Hydraulic Resistance: Coefficients of Local Resistance and of Friction (Spravochnik Po Gidravlicheskim Soprotivleniyam, Koeffitsienty Mestnykh Soprotivlenii i Soprotivleniya Treniya). National technical information Service, 1966. .. [3] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. .. [4] Swamee, Prabhata K., and Ashok K. Sharma. Design of Water Supply Pipe Networks. John Wiley & Sons, 2008. .. [5] Miller, Donald S. Internal Flow Systems: Design and Performance Prediction. Gulf Publishing Company, 1990. .. [6] Hooper, William B. "Calculate Head Loss Caused by Change in Pipe Size." Chemical Engineering 95, no. 16 (November 7, 1988): 89. ''' beta = Di1/Di2 beta2 = beta*beta if l is not None: angle_rad = 2.0*atan(0.5*(Di2-Di1)/l) angle_deg = angle_rad*rad2deg l_calc = l elif angle is not None: angle_rad = angle*deg2rad angle_deg = angle l_calc = (Di2 - Di1)/(2.0*tan(0.5*angle_rad)) else: raise ValueError('Either `l` or `angle` must be specified') if method is None: method = 'Rennels' if method == 'Rennels': if fd is None: if Re is None: raise ValueError("The `Rennels` method requires either a " "specified friction factor or `Re`") fd = Clamond(Re=Re, eD=roughness/Di2, fast=False) if 0.0 < angle_deg <= 20.0: K = 8.30*tan(0.5*angle_rad)**1.75*(1.0 - beta2)**2 + 0.125*fd*(1.0 - beta2*beta2)/sin(0.5*angle_rad) elif 20.0 < angle_deg <= 60.0 and 0.0 <= beta < 0.5: K = (1.366*sqrt(sin(2.0*pi*(angle_deg - 15.0)/180.)) - 0.170 - 3.28*(0.0625-beta**4)*sqrt(0.025*(angle_deg-20.0)))*(1.0 - beta2)**2 + 0.125*fd*(1.0 - beta2*beta2)/sin(0.5*angle_rad) elif 20.0 < angle_deg <= 60.0 and beta >= 0.5: K = (1.366*sqrt(sin(2.0*pi*(angle_deg - 15.0)/180.0)) - 0.170)*(1.0 - beta2)**2 + 0.125*fd*(1.0 - beta2*beta2)/sin(0.5*angle_rad) elif 60.0 < angle_deg <= 180.0 and 0.0 <= beta < 0.5: beta4 = beta2*beta2 K = (1.205 - 3.28*(0.0625 - beta4) - 12.8*beta4*beta2*sqrt((angle_deg - 60.0)/120.))*(1.0 - beta2)**2 elif 60.0 < angle_deg <= 180.0 and beta >= 0.5: K = (1.205 - 0.20*sqrt((angle_deg - 60.0)/120.))*(1.0 - beta**2)**2 else: raise ValueError('Conical diffuser inputs incorrect') return K elif method == 'Crane': return diffuser_conical_Crane(Di1=Di1, Di2=Di2, l=l_calc, angle=angle_deg) elif method == 'Miller': A_ratio = 1.0/beta2 if A_ratio > 4.0: A_ratio = 4.0 elif A_ratio < 1.1: A_ratio = 1.1 l_R1_ratio = l_calc/(0.5*Di1) if l_R1_ratio < 0.1: l_R1_ratio = 0.1 elif l_R1_ratio > 20.0: l_R1_ratio = 20.0 Kd = max(float(bisplev(log(l_R1_ratio), log(A_ratio), tck_diffuser_conical_Miller)), 0) return Kd elif method == 'Idelchik': A_ratio = beta2 # Angles 0 to 20, ratios 0.05 to 0.06 if angle_deg > 20.0: angle_fric = 20.0 elif angle_deg < 2.0: angle_fric = 2.0 else: angle_fric = angle_deg A_ratio_fric = A_ratio if A_ratio_fric < 0.05: A_ratio_fric = 0.05 elif A_ratio_fric > 0.6: A_ratio_fric = 0.6 K_fr = float(contraction_conical_frction_Idelchik_obj(angle_fric, A_ratio_fric)) K_exp = float(diffuser_conical_Idelchik_obj(min(0.6, A_ratio), max(3.0, angle_deg))) return K_fr + K_exp elif method == 'Swamee': # Really starting to thing Swamee uses a different definition of loss coefficient! r = Di2/Di1 K = 1.0/sqrt(0.25*angle_rad**-3*(1.0 + 0.6*r**(-1.67)*(pi-angle_rad)/angle_rad)**(0.533*r - 2.6)) return K elif method == 'Hooper': if Re is None: raise ValueError("Method `Hooper` requires Reynolds number") if Re < 4000.0: return 2.0*(1.0 - beta*beta*beta*beta) # Not the same formula as Rennels if fd is None: fd = Clamond(Re=Re, eD=roughness/Di1) x = 1.0 - beta*beta K = (1.0 + 0.8*fd)*x*x if angle_rad > 0.25*pi: return K return K*2.6*sin(0.5*angle_rad) else: raise ValueError(diffuser_conical_method_unknown)
[docs]def diffuser_conical_staged(Di1, Di2, DEs, ls, fd=None, method='Rennels'): r'''Returns loss coefficient for any series of staged conical pipe expansions as shown in [1]_. Five different formulas are used, depending on the angle and the ratio of diameters. This function calls diffuser_conical. Parameters ---------- Di1 : float Inside diameter of original pipe (smaller), [m] Di2 : float Inside diameter of following pipe (larger), [m] DEs : array Diameters of intermediate sections, [m] ls : array Lengths of the various sections, size 1 more than `DEs`, [m] fd : float Darcy friction factor [-] method : str The method to use for the calculation; one of 'Rennels', 'Crane', 'Miller', 'Swamee', or 'Idelchik' [-] Returns ------- K : float Loss coefficient with respect to smaller, upstream diameter [-] Notes ----- Only lengths of sections currently allowed. This could be changed to understand angles also. Formula doesn't make much sense, as observed by the example comparing a series of conical sections. Use only for small numbers of segments of highly differing angles. Examples -------- >>> diffuser_conical_staged(Di1=1., Di2=10., DEs=[2,3,4], ls=[1.1,1.2,1.3,1.4], fd=0.01) 1.9317533188274658 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. ''' K = 0.0 K += diffuser_conical(Di1=Di1, Di2=DEs[0], l=ls[0], fd=fd, method=method) K += diffuser_conical(Di1=DEs[-1], Di2=Di2, l=ls[-1], fd=fd, method=method) for i in range(len(DEs)-1): K += diffuser_conical(Di1=DEs[i], Di2=DEs[i+1], l=ls[i+1], fd=fd, method=method) return K
[docs]def diffuser_curved(Di1, Di2, l): r'''Returns loss coefficient for any curved wall pipe expansion as shown in [1]_. .. math:: K_1 = \phi(1.43-1.3\beta^2)(1-\beta^2)^2 .. math:: \phi = 1.01 - 0.624\frac{l}{d_1} + 0.30\left(\frac{l}{d_1}\right)^2 - 0.074\left(\frac{l}{d_1}\right)^3 + 0.0070\left(\frac{l}{d_1}\right)^4 .. figure:: fittings/curved_wall_diffuser.png :scale: 25 % :alt: diffuser curved; after [1]_ Parameters ---------- Di1 : float Inside diameter of original pipe (smaller), [m] Di2 : float Inside diameter of following pipe (larger), [m] l : float Length of the curve along the pipe axis, [m] Returns ------- K : float Loss coefficient [-] Notes ----- Beta^2 should be between 0.1 and 0.9. A small mismatch between tabulated values of this function in table 11.3 is observed with the equation presented. Examples -------- >>> diffuser_curved(Di1=.25**0.5, Di2=1., l=2.) 0.2299781250000002 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. ''' beta = Di1/Di2 phi = 1.01 - 0.624*l/Di1 + 0.30*(l/Di1)**2 - 0.074*(l/Di1)**3 + 0.0070*(l/Di1)**4 return phi*(1.43 - 1.3*beta**2)*(1 - beta**2)**2
[docs]def diffuser_pipe_reducer(Di1, Di2, l, fd1, fd2=None): r'''Returns loss coefficient for any pipe reducer pipe expansion as shown in [1]. This is an approximate formula. .. math:: K_f = f_1\frac{0.20l}{d_1} + \frac{f_1(1-\beta)}{8\sin(\alpha/2)} + f_2\frac{0.20l}{d_2}\beta^4 .. math:: \alpha = 2\tan^{-1}\left(\frac{d_1-d_2}{1.20l}\right) Parameters ---------- Di1 : float Inside diameter of original pipe (smaller), [m] Di2 : float Inside diameter of following pipe (larger), [m] l : float Length of the pipe reducer along the pipe axis, [m] fd1 : float Darcy friction factor at inlet diameter [-] fd2 : float Darcy friction factor at outlet diameter, optional [-] Returns ------- K : float Loss coefficient [-] Notes ----- Industry lack of standardization prevents better formulas from being developed. Add 15% if the reducer is eccentric. Friction factor at outlet will be assumed the same as at inlet if not specified. Doubt about the validity of this equation is raised. Examples -------- >>> diffuser_pipe_reducer(Di1=.5, Di2=.75, l=1.5, fd1=0.07) 0.06873244301714816 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. ''' if fd2 is None: fd2 = fd1 beta = Di1/Di2 angle = -2*atan((Di1-Di2)/1.20/l) K = fd1*0.20*l/Di1 + fd1*(1-beta)/8./sin(angle/2) + fd2*0.20*l/Di2*beta**4 return K
### TODO: Tees DARBY_ANGLE_45DEG_FULL_VALVE = 'Valve, Angle valve, 45°, full line size, β = 1' DARBY_ANGLE_90DEG_FULL_VALVE = 'Valve, Angle valve, 90°, full line size, β = 1' DARBY_GLOBE_FULL_VALVE = 'Valve, Globe valve, standard, β = 1' DARBY_PLUG_VALVE_BRANCH_FLOW = 'Valve, Plug valve, branch flow' DARBY_PLUG_VALVE_STRAIGHT_THROUGH = 'Valve, Plug valve, straight through' DARBY_PLUG_VALVE_THREE_WAY_FLOW_THROUGH = 'Valve, Plug valve, three-way (flow through)' DARBY_GATE_VALVE = 'Valve, Gate valve, standard, β = 1' DARBY_BALL_VALVE = 'Valve, Ball valve, standard, β = 1' DARBY_DIAPHRAGM_DAM_VALVE = 'Valve, Diaphragm, dam type' DARBY_SWING_CHECK_VALVE = 'Valve, Swing check' DARBY_LIFT_CHECK_VALVE = 'Valve, Lift check' DARBY_VALVES = [DARBY_ANGLE_45DEG_FULL_VALVE, DARBY_ANGLE_90DEG_FULL_VALVE, DARBY_GLOBE_FULL_VALVE, DARBY_PLUG_VALVE_BRANCH_FLOW, DARBY_PLUG_VALVE_STRAIGHT_THROUGH, DARBY_PLUG_VALVE_THREE_WAY_FLOW_THROUGH, DARBY_GATE_VALVE, DARBY_BALL_VALVE, DARBY_DIAPHRAGM_DAM_VALVE, DARBY_SWING_CHECK_VALVE, DARBY_LIFT_CHECK_VALVE] ### 3 Darby 3K Method (with valves) Darby = {} """Dictionary of coefficients for Darby's 3K fitting pressure drop method; the tuple contains :math:`K_1` and :math:`K_i` and :math:`K_d` in that order. """ Darby['Elbow, 90°, threaded, standard, (r/D = 1)'] = (800.0, 0.14, 4.0) Darby['Elbow, 90°, threaded, long radius, (r/D = 1.5)'] = (800.0, 0.071, 4.2) Darby['Elbow, 90°, flanged, welded, bends, (r/D = 1)'] = (800.0, 0.091, 4.0) Darby['Elbow, 90°, (r/D = 2)'] = (800.0, 0.056, 3.9) Darby['Elbow, 90°, (r/D = 4)'] = (800.0, 0.066, 3.9) Darby['Elbow, 90°, (r/D = 6)'] = (800.0, 0.075, 4.2) Darby['Elbow, 90°, mitered, 1 weld, (90°)'] = (1000.00, 0.27, 4.0) Darby['Elbow, 90°, 2 welds, (45°)'] = (800.0, 0.068, 4.1) Darby['Elbow, 90°, 3 welds, (30°)'] = (800.0, 0.035, 4.2) Darby['Elbow, 45°, threaded standard, (r/D = 1)'] = (500.0, 0.071, 4.2) Darby['Elbow, 45°, long radius, (r/D = 1.5)'] = (500.0, 0.052, 4.0) Darby['Elbow, 45°, mitered, 1 weld, (45°)'] = (500.0, 0.086, 4.0) Darby['Elbow, 45°, mitered, 2 welds, (22.5°)'] = (500.0, 0.052, 4.0) Darby['Elbow, 180°, threaded, close-return bend, (r/D = 1)'] = (1000.00, 0.23, 4.0) Darby['Elbow, 180°, flanged, (r/D = 1)'] = (1000.00, 0.12, 4.0) Darby['Elbow, 180°, all, (r/D = 1.5)'] = (1000.00, 0.1, 4.0) Darby['Tee, Through-branch, (as elbow), threaded, (r/D = 1)'] = (500.0, 0.274, 4.0) Darby['Tee, Through-branch,(as elbow), (r/D = 1.5)'] = (800.0, 0.14, 4.0) Darby['Tee, Through-branch, (as elbow), flanged, (r/D = 1)'] = (800.0, 0.28, 4.0) Darby['Tee, Through-branch, (as elbow), stub-in branch'] = (1000.00, 0.34, 4.0) Darby['Tee, Run-through, threaded, (r/D = 1)'] = (200.0, 0.091, 4.0) Darby['Tee, Run-through, flanged, (r/D = 1)'] = (150.0, 0.05, 4.0) Darby['Tee, Run-through, stub-in branch'] = (100.0, 0.0, 0.0) Darby[DARBY_ANGLE_45DEG_FULL_VALVE] = (950.0, 0.25, 4.0) Darby[DARBY_ANGLE_90DEG_FULL_VALVE] = (1000.0, 0.69, 4.0) Darby[DARBY_GLOBE_FULL_VALVE] = (1500.0, 1.7, 3.6) Darby[DARBY_PLUG_VALVE_BRANCH_FLOW] = (500.0, 0.41, 4.0) Darby[DARBY_PLUG_VALVE_STRAIGHT_THROUGH] = (300.0, 0.084, 3.9) Darby[DARBY_PLUG_VALVE_THREE_WAY_FLOW_THROUGH] = (300.0, 0.14, 4.0) Darby[DARBY_GATE_VALVE] = (300.0, 0.037, 3.9) Darby[DARBY_BALL_VALVE] = (300.0, 0.017, 3.5) Darby[DARBY_DIAPHRAGM_DAM_VALVE] = (1000.00, 0.69, 4.9) Darby[DARBY_SWING_CHECK_VALVE] = (1500.0, 0.46, 4.0) Darby[DARBY_LIFT_CHECK_VALVE] = (2000.00, 2.85, 3.8) try: if IS_NUMBA: # type: ignore # noqa: F821 Darby_keys = tuple(Darby.keys()) Darby_values = tuple(Darby.values()) except: pass
[docs]def Darby3K(NPS=None, Re=None, name=None, K1=None, Ki=None, Kd=None, Di=None): r'''Returns loss coefficient for any various fittings, depending on the name input. Alternatively, the Darby constants K1, Ki and Kd may be provided and used instead. Source of data is [1]_. Reviews of this model are favorable. .. math:: K_f = \frac{K_1}{Re} + K_i\left(1 + \frac{K_d}{D_{\text{NPS}}^{0.3}} \right) Note this model uses nominal pipe diameter in inches. Parameters ---------- NPS : float Nominal diameter of the pipe, [in] Re : float Reynolds number, [-] name : str String from Darby dict representing a fitting K1 : float K1 parameter of Darby model, optional [-] Ki : float Ki parameter of Darby model, optional [-] Kd : float Kd parameter of Darby model, optional [in] Di : float If specified, the NPS will be found by interpolating linearly (with extrapolation) along the schedule 40 diameters and NPSs; this will supersede NPS if it is specified, [m] Returns ------- K : float Loss coefficient [-] Notes ----- Also described in Albright's Handbook and Ludwig's Applied Process Design. Relatively uncommon to see it used. The possibility of combining these methods with those above are attractive. Examples -------- >>> Darby3K(NPS=2., Re=10000., name='Valve, Angle valve, 45°, full line size, β = 1') 1.1572523963562356 >>> Darby3K(Di=.05248, Re=10000., name='Valve, Angle valve, 45°, full line size, β = 1') 1.1572523963562356 >>> Darby3K(NPS=12., Re=10000., K1=950, Ki=0.25, Kd=4) 0.819510280626355 References ---------- .. [1] Silverberg, Peter, and Ron Darby. "Correlate Pressure Drops through Fittings: Three Constants Accurately Calculate Flow through Elbows, Valves and Tees." Chemical Engineering 106, no. 7 (July 1999): 101. .. [2] Silverberg, Peter. "Correlate Pressure Drops Through Fittings." Chemical Engineering 108, no. 4 (April 2001): 127,129-130. ''' if Di is not None: NPS = interp(Di*1000.0, S40i, NPS40, extrapolate=True) if name is not None: K1 = None if name in Darby: # NUMBA: DELETE K1, Ki, Kd = Darby[name] # NUMBA: DELETE if K1 is None: try: K1, Ki, Kd = Darby_values[Darby_keys.index(name)] except: raise ValueError('Name of fitting is not in database') elif K1 is not None and Ki is not None and Kd is not None: pass else: raise ValueError('Name of fitting or constants are required') return K1/Re + Ki*(1. + Kd*NPS**-0.3)
### 2K Hooper Method HOOPER_CHECK_VALVE_TILTING_DISK = 'Valve, Check, Tilting-disc' HOOPER_CHECK_VALVE_SWING = 'Valve, Check, Swing' HOOPER_CHECK_VALVE_LIFT = 'Valve, Check, Lift' HOOPER_BUTTERFLY_VALVE = 'Valve, Butterfly,' HOOPER_DIAPHRAGM_DAM_VALVE = 'Valve, Diaphragm, Dam type' HOOPER_GLOBE_ANGLED_OR_Y_VALVE = 'Valve, Globe, Angle or Y-type' HOOPER_GLOBE_STANDARD_VALVE = 'Valve, Globe, Standard' HOOPER_PLUG_REDUCED_TRIM_VALVE = 'Valve, Plug, Reduced trim, Beta = 0.8' HOOPER_BALL_REDUCED_TRIM_VALVE = 'Valve, Ball, Reduced trim, Beta = 0.9' HOOPER_GATE_FULL_LINE_SIZE_VALVE = 'Valve, Gate, Full line size, Beta = 1' HOOPER_VALVES = [HOOPER_CHECK_VALVE_TILTING_DISK, HOOPER_CHECK_VALVE_SWING, HOOPER_CHECK_VALVE_LIFT, HOOPER_BUTTERFLY_VALVE, HOOPER_DIAPHRAGM_DAM_VALVE, HOOPER_GLOBE_ANGLED_OR_Y_VALVE, HOOPER_GLOBE_STANDARD_VALVE, HOOPER_PLUG_REDUCED_TRIM_VALVE, HOOPER_BALL_REDUCED_TRIM_VALVE, HOOPER_GATE_FULL_LINE_SIZE_VALVE] Hooper = {} r"""Dictionary of coefficients for Hooper's 2K fitting pressure drop method; the tuple contains :math:`K_1` and :math:`K_\infty` in that order. """ Hooper['Elbow, 90°, Standard (R/D = 1), Screwed'] = (800.0, 0.4) Hooper['Elbow, 90°, Standard (R/D = 1), Flanged/welded'] = (800.0, 0.25) Hooper['Elbow, 90°, Long-radius (R/D = 1.5), All types'] = (800.0, 0.2) Hooper['Elbow, 90°, Mitered (R/D = 1.5), 1 weld (90° angle)'] = (1000.0, 1.15) Hooper['Elbow, 90°, Mitered (R/D = 1.5), 2 weld (45° angle)'] = (800.0, 0.35) Hooper['Elbow, 90°, Mitered (R/D = 1.5), 3 weld (30° angle)'] = (800.0, 0.3) Hooper['Elbow, 90°, Mitered (R/D = 1.5), 4 weld (22.5° angle)'] = (800.0, 0.27) Hooper['Elbow, 90°, Mitered (R/D = 1.5), 5 weld (18° angle)'] = (800.0, 0.25) Hooper['Elbow, 45°, Standard (R/D = 1), All types'] = (500.0, 0.2) Hooper['Elbow, 45°, Long-radius (R/D 1.5), All types'] = (500.0, 0.15) Hooper['Elbow, 45°, Mitered (R/D=1.5), 1 weld (45° angle)'] = (500.0, 0.25) Hooper['Elbow, 45°, Mitered (R/D=1.5), 2 weld (22.5° angle)'] = (500.0, 0.15) Hooper['Elbow, 45°, Standard (R/D = 1), Screwed'] = (1000.0, 0.7) Hooper['Elbow, 180°, Standard (R/D = 1), Flanged/welded'] = (1000.0, 0.35) Hooper['Elbow, 180°, Long-radius (R/D = 1.5), All types'] = (1000.0, 0.3) Hooper['Elbow, Used as, Standard, Screwed'] = (500.0, 0.7) Hooper['Elbow, Elbow, Long-radius, Screwed'] = (800.0, 0.4) Hooper['Elbow, Elbow, Standard, Flanged/welded'] = (800.0, 0.8) Hooper['Elbow, Elbow, Stub-in type branch'] = (1000.0, 1.0) Hooper['Tee, Run, Screwed'] = (200.0, 0.1) Hooper['Tee, Through, Flanged or welded'] = (150.0, 0.05) Hooper['Tee, Tee, Stub-in type branch'] = (100.0, 0.0) Hooper[HOOPER_GATE_FULL_LINE_SIZE_VALVE] = (300.0, 0.1) Hooper[HOOPER_BALL_REDUCED_TRIM_VALVE] = (500.0, 0.15) Hooper[HOOPER_PLUG_REDUCED_TRIM_VALVE] = (1000.0, 0.25) Hooper[HOOPER_GLOBE_STANDARD_VALVE] = (1500.0, 4.0) Hooper[HOOPER_GLOBE_ANGLED_OR_Y_VALVE] = (1000.0, 2.0) Hooper[HOOPER_DIAPHRAGM_DAM_VALVE] = (1000.0, 2.0) Hooper[HOOPER_BUTTERFLY_VALVE] = (800.0, 0.25) Hooper[HOOPER_CHECK_VALVE_LIFT] = (2000.0, 10.0) Hooper[HOOPER_CHECK_VALVE_SWING] = (1500.0, 1.5) Hooper[HOOPER_CHECK_VALVE_TILTING_DISK] = (1000.0, 0.5) try: if IS_NUMBA: # type: ignore # noqa: F821 Hooper_keys = tuple(Hooper.keys()) Hooper_values = tuple(Hooper.values()) except: pass
[docs]def Hooper2K(Di, Re, name=None, K1=None, Kinfty=None): r'''Returns loss coefficient for any various fittings, depending on the name input. Alternatively, the Hooper constants K1, Kinfty may be provided and used instead. Source of data is [1]_. Reviews of this model are favorable less favorable than the Darby method but superior to the constant-K method. .. math:: K = \frac{K_1}{Re} + K_\infty\left(1 + \frac{1\text{ inch}}{D_{in}}\right) **Note this model uses actual inside pipe diameter in inches.** Parameters ---------- Di : float Actual inside diameter of the pipe, [in] Re : float Reynolds number, [-] name : str, optional String from Hooper dict representing a fitting K1 : float, optional K1 parameter of Hooper model, optional [-] Kinfty : float, optional Kinfty parameter of Hooper model, optional [-] Returns ------- K : float Loss coefficient [-] Notes ----- Also described in Ludwig's Applied Process Design. Relatively uncommon to see it used. No actual example found. Examples -------- >>> Hooper2K(Di=2., Re=10000., name='Valve, Globe, Standard') 6.15 >>> Hooper2K(Di=2., Re=10000., K1=900, Kinfty=4) 6.09 References ---------- .. [1] Hooper, W. B., "The 2-K Method Predicts Head Losses in Pipe Fittings," Chem. Eng., p. 97, Aug. 24 (1981). .. [2] Hooper, William B. "Calculate Head Loss Caused by Change in Pipe Size." Chemical Engineering 95, no. 16 (November 7, 1988): 89. .. [3] Kayode Coker. Ludwig's Applied Process Design for Chemical and Petrochemical Plants. 4E. Amsterdam ; Boston: Gulf Professional Publishing, 2007. ''' if name is not None: K1 = None if name in Hooper: # NUMBA: DELETE K1, Kinfty = Hooper[name] # NUMBA: DELETE if K1 is None: try: K1, Kinfty = Hooper_values[Hooper_keys.index(name)] except: raise ValueError('Name of fitting is not in database') elif K1 is not None and Kinfty is not None: pass else: raise ValueError('Name of fitting or constants are required') return K1/Re + Kinfty*(1. + 1./Di)
### Valves
[docs]def Kv_to_Cv(Kv): r'''Convert valve flow coefficient from imperial to common metric units. .. math:: C_v = 1.156 K_v Parameters ---------- Kv : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] Returns ------- Cv : float Imperial Cv valve flow coefficient (flow rate of water at a pressure drop of 1 psi) [gallons/minute] Notes ----- Kv = 0.865 Cv is in the IEC standard 60534-2-1. It has also been said that Cv = 1.17Kv; this is wrong by current standards. The conversion factor does not depend on the density of the fluid or the diameter of the valve. It is calculated with the definition of a US gallon as 231 cubic inches, and a psi as a pound-force per square inch. The exact conversion coefficient between Kv to Cv is 1.1560992283536566; it is rounded in the formula above. Examples -------- >>> Kv_to_Cv(2) 2.3121984567073133 References ---------- .. [1] ISA-75.01.01-2007 (60534-2-1 Mod) Draft ''' return 1.1560992283536566*Kv
[docs]def Cv_to_Kv(Cv): r'''Convert valve flow coefficient from imperial to common metric units. .. math:: K_v = C_v/1.156 Parameters ---------- Cv : float Imperial Cv valve flow coefficient (flow rate of water at a pressure drop of 1 psi) [gallons/minute] Returns ------- Kv : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] Notes ----- Kv = 0.865 Cv is in the IEC standard 60534-2-1. It has also been said that Cv = 1.17Kv; this is wrong by current standards. The conversion factor does not depend on the density of the fluid or the diameter of the valve. It is calculated with the definition of a US gallon as 231 cubic inches, and a psi as a pound-force per square inch. The exact conversion coefficient between Kv to Cv is 1.1560992283536566; it is rounded in the formula above. Examples -------- >>> Cv_to_Kv(2.312) 1.9998283393826013 References ---------- .. [1] ISA-75.01.01-2007 (60534-2-1 Mod) Draft ''' return Cv/1.1560992283536566
[docs]def Kv_to_K(Kv, D): r'''Convert valve flow coefficient from common metric units to regular loss coefficients. .. math:: K = 1.6\times 10^9 \frac{D^4}{K_v^2} Parameters ---------- Kv : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] D : float Inside diameter of the valve [m] Returns ------- K : float Loss coefficient, [-] Notes ----- Crane TP 410 M (2009) gives the coefficient of 0.04 (with diameter in mm). It also suggests the density of water should be found between 5-40°C. Older versions specify the density should be found at 60 °F, which is used here, and the pessure for the appropriate density is back calculated. .. math:: \Delta P = 1 \text{ bar} = \frac{1}{2}\rho V^2\cdot K V = \frac{\frac{K_v\cdot \text{ hour}}{3600 \text{ second}}}{\frac{\pi}{4}D^2} \rho = 999.29744568 \;\; kg/m^3 \text{ at } T=60° F, P = 703572 Pa The value of density is calculated with IAPWS-95; it is chosen as it makes the coefficient a very convenient round number. Others constants that have been used are 1.604E9, and 1.60045E9. Examples -------- >>> Kv_to_K(2.312, .015) 15.153374600399898 References ---------- .. [1] ISA-75.01.01-2007 (60534-2-1 Mod) Draft ''' return 1.6E9*D**4*Kv**-2
[docs]def K_to_Kv(K, D): r'''Convert regular loss coefficient to valve flow coefficient. .. math:: K_v = 4\times 10^4 \sqrt{ \frac{D^4}{K}} Parameters ---------- K : float Loss coefficient, [-] D : float Inside diameter of the valve [m] Returns ------- Kv : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] Notes ----- Crane TP 410 M (2009) gives the coefficient of 0.04 (with diameter in mm). It also suggests the density of water should be found between 5-40°C. Older versions specify the density should be found at 60 °F, which is used here, and the pessure for the appropriate density is back calculated. .. math:: \Delta P = 1 \text{ bar} = \frac{1}{2}\rho V^2\cdot K V = \frac{\frac{K_v\cdot \text{ hour}}{3600 \text{ second}}}{\frac{\pi}{4}D^2} \rho = 999.29744568 \;\; kg/m^3 \text{ at } T=60° F, P = 703572 Pa The value of density is calculated with IAPWS-95; it is chosen as it makes the coefficient a very convenient round number. Others constants that have been used are 1.604E9, and 1.60045E9. Examples -------- >>> K_to_Kv(15.15337460039990, .015) 2.312 References ---------- .. [1] ISA-75.01.01-2007 (60534-2-1 Mod) Draft ''' return D*D*sqrt(1.6E9/K)
[docs]def K_to_Cv(K, D): r'''Convert regular loss coefficient to imperial valve flow coefficient. .. math:: K_v = 1.156 \cdot 4\times 10^4 \sqrt{ \frac{D^4}{K}} Parameters ---------- K : float Loss coefficient, [-] D : float Inside diameter of the valve [m] Returns ------- Cv : float Imperial Cv valve flow coefficient (flow rate of water at a pressure drop of 1 psi) [gallons/minute] Notes ----- The conversion factor does not depend on the density of the fluid or the diameter of the valve. It is calculated with the definition of a US gallon as 231 cubic inches, and a psi as a pound-force per square inch. The exact conversion coefficient between Kv to Cv is 1.1560992283536566; it is rounded in the formula above. Examples -------- >>> K_to_Cv(16, .015) 2.601223263795727 References ---------- .. [1] ISA-75.01.01-2007 (60534-2-1 Mod) Draft ''' return 1.1560992283536566*D*D*sqrt(1.6E9/K)
[docs]def Cv_to_K(Cv, D): r'''Convert imperial valve flow coefficient from imperial units to regular loss coefficients. .. math:: K = 1.6\times 10^9 \frac{D^4}{\left(\frac{C_v}{1.56}\right)^2} Parameters ---------- Cv : float Imperial Cv valve flow coefficient (flow rate of water at a pressure drop of 1 psi) [gallons/minute] D : float Inside diameter of the valve [m] Returns ------- K : float Loss coefficient, [-] Notes ----- The exact conversion coefficient between Kv to Cv is 1.1560992283536566; it is rounded in the formula above. Examples -------- >>> Cv_to_K(2.712, .015) 14.719595348352 References ---------- .. [1] ISA-75.01.01-2007 (60534-2-1 Mod) Draft ''' D2 = D*D term = (Cv*(1.0/1.1560992283536566)) return 1.6E9*D2*D2/(term*term)
[docs]def K_gate_valve_Crane(D1, D2, angle, fd=None): r'''Returns loss coefficient for a gate valve of types wedge disc, double disc, or plug type, as shown in [1]_. If β = 1 and θ = 0: .. math:: K = K_1 = K_2 = 8f_d If β < 1 and θ <= 45°: .. math:: K_2 = \frac{K + \sin \frac{\theta}{2} \left[0.8(1-\beta^2) + 2.6(1-\beta^2)^2\right]}{\beta^4} If β < 1 and θ > 45°: .. math:: K_2 = \frac{K + 0.5\sqrt{\sin\frac{\theta}{2}}(1-\beta^2) + (1-\beta^2)^2}{\beta^4} Parameters ---------- D1 : float Diameter of the valve seat bore (must be smaller or equal to `D2`), [m] D2 : float Diameter of the pipe attached to the valve, [m] angle : float Angle formed by the reducer in the valve, [degrees] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor! [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions [2]_. Examples -------- Example 7-4 in [1]_; a 150 by 100 mm class 600 steel gate valve, conically tapered ports, length 550 mm, back of sear ring ~150 mm. The valve is connected to 146 mm schedule 80 pipe. The angle can be calculated to be 13 degrees. The valve is specified to be operating in turbulent conditions. >>> K_gate_valve_Crane(D1=.1, D2=.146, angle=13.115) 1.1466029421844073 The calculated result is lower than their value of 1.22; the difference is due to Crane's generous intermediate rounding. A later, Imperial edition of Crane rounds differently - and comes up with K=1.06. References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. .. [2] Harvey Wilson. "Pressure Drop in Pipe Fittings and Valves | Equivalent Length and Resistance Coefficient." Katmar Software. Accessed July 28, 2017. http://www.katmarsoftware.com/articles/pipe-fitting-pressure-drop.htm. ''' angle = radians(angle) beta = D1/D2 if fd is None: fd = ft_Crane(D2) K1 = 8.0*fd # This does not refer to upstream loss per se if beta == 1.0 or angle == 0.0: return K1 # upstream and down else: beta2 = beta*beta one_m_beta2 = 1.0 - beta2 if angle <= 0.7853981633974483: K = (K1 + sin(0.5*angle)*(one_m_beta2*(0.8 + 2.6*one_m_beta2)))/(beta2*beta2) else: K = (K1 + one_m_beta2*(0.5*sqrt(sin(0.5*angle)) + one_m_beta2))/(beta2*beta2) return K
[docs]def K_globe_valve_Crane(D1, D2, fd=None): r'''Returns the loss coefficient for all types of globe valve, (reduced seat or throttled) as shown in [1]_. If β = 1: .. math:: K = K_1 = K_2 = 340 f_d Otherwise: .. math:: K_2 = \frac{K + \left[0.5(1-\beta^2) + (1-\beta^2)^2\right]}{\beta^4} Parameters ---------- D1 : float Diameter of the valve seat bore (must be smaller or equal to `D2`), [m] D2 : float Diameter of the pipe attached to the valve, [m] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_globe_valve_Crane(.01, .02) 135.9200548324305 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' beta = D1/D2 if fd is None: fd = ft_Crane(D2) K1 = 340.0*fd if beta == 1.0: return K1 # upstream and down else: beta2 = beta*beta one_m_beta = 1.0 - beta one_m_beta2 = 1.0 - beta2 return (K1 + beta*(0.5*one_m_beta*one_m_beta + one_m_beta2*one_m_beta2))/(beta2*beta2)
[docs]def K_angle_valve_Crane(D1, D2, fd=None, style=0): r'''Returns the loss coefficient for all types of angle valve, (reduced seat or throttled) as shown in [1]_. If β = 1: .. math:: K = K_1 = K_2 = N\cdot f_d Otherwise: .. math:: K_2 = \frac{K + \left[0.5(1-\beta^2) + (1-\beta^2)^2\right]}{\beta^4} For style 0 and 2, N = 55; for style 1, N=150. Parameters ---------- D1 : float Diameter of the valve seat bore (must be smaller or equal to `D2`), [m] D2 : float Diameter of the pipe attached to the valve, [m] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] style : int, optional One of 0, 1, or 2; refers to three different types of angle valves as shown in [1]_ [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_angle_valve_Crane(.01, .02) 26.597361811128465 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' beta = D1/D2 if style not in (0, 1, 2): raise ValueError('Valve style should be 0, 1, or 2') if fd is None: fd = ft_Crane(D2) if style == 0 or style == 2: K1 = 55.0*fd else: K1 = 150.0*fd if beta == 1: return K1 # upstream and down else: return (K1 + beta*(0.5*(1-beta)**2 + (1-beta**2)**2))/beta**4
[docs]def K_swing_check_valve_Crane(D=None, fd=None, angled=True): r'''Returns the loss coefficient for a swing check valve as shown in [1]_. .. math:: K_2 = N\cdot f_d For angled swing check valves N = 100; for straight valves, N = 50. Parameters ---------- D : float, optional Diameter of the pipe attached to the valve, [m] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] angled : bool, optional If True, returns a value 2x the unangled value; the style of the valve [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_swing_check_valve_Crane(D=.02) 2.3974274785373257 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if D is None and fd is None: raise ValueError('Either `D` or `fd` must be specified') if fd is None: fd = ft_Crane(D) if angled: return 100.*fd return 50.*fd
[docs]def K_lift_check_valve_Crane(D1, D2, fd=None, angled=True): r'''Returns the loss coefficient for a lift check valve as shown in [1]_. If β = 1: .. math:: K = K_1 = K_2 = N\cdot f_d Otherwise: .. math:: K_2 = \frac{K + \left[0.5(1-\beta^2) + (1-\beta^2)^2\right]}{\beta^4} For angled lift check valves N = 55; for straight valves, N = 600. Parameters ---------- D1 : float Diameter of the valve seat bore (must be smaller or equal to `D2`), [m] D2 : float Diameter of the pipe attached to the valve, [m] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] angled : bool, optional If True, returns a value 2x the unangled value; the style of the valve [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_lift_check_valve_Crane(.01, .02) 28.597361811128465 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' beta = D1/D2 if fd is None: fd = ft_Crane(D2) if angled: K1 = 55*fd if beta == 1: return K1 else: return (K1 + beta*(0.5*(1 - beta**2) + (1 - beta**2)**2))/beta**4 else: K1 = 600.*fd if beta == 1: return K1 else: return (K1 + beta*(0.5*(1 - beta**2) + (1 - beta**2)**2))/beta**4
[docs]def K_tilting_disk_check_valve_Crane(D, angle, fd=None): r'''Returns the loss coefficient for a tilting disk check valve as shown in [1]_. Results are specified in [1]_ to be for the disk's resting position to be at 5 or 25 degrees to the flow direction. The model is implemented here so as to switch to the higher loss 15 degree coefficients at 10 degrees, and use the lesser coefficients for any angle under 10 degrees. .. math:: K = N\cdot f_d N is obtained from the following table: +--------+-------------+-------------+ | | angle = 5 ° | angle = 15° | +========+=============+=============+ | 2-8" | 40 | 120 | +--------+-------------+-------------+ | 10-14" | 30 | 90 | +--------+-------------+-------------+ | 16-48" | 20 | 60 | +--------+-------------+-------------+ The actual change of coefficients happen at <= 9" and <= 15". Parameters ---------- D : float Diameter of the pipe section the valve in mounted in; the same as the line size [m] angle : float Angle of the tilting disk to the flow direction; nominally 5 or 15 degrees [degrees] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_tilting_disk_check_valve_Crane(.01, 5) 1.1626516551826345 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if fd is None: fd = ft_Crane(D) if angle < 10: # 5 degree case if D <= 0.2286: # 2-8 inches, split at 9 inch return 40*fd elif D <= 0.381: # 10-14 inches, split at 15 inch return 30*fd else: # 16-18 inches return 20*fd else: # 15 degree case if D < 0.2286: # 2-8 inches return 120*fd elif D < 0.381: # 10-14 inches return 90*fd else: # 16-18 inches return 60*fd
globe_stop_check_valve_Crane_coeffs = {0: 400.0, 1: 300.0, 2: 55.0}
[docs]def K_globe_stop_check_valve_Crane(D1, D2, fd=None, style=0): r'''Returns the loss coefficient for a globe stop check valve as shown in [1]_. If β = 1: .. math:: K = K_1 = K_2 = N\cdot f_d Otherwise: .. math:: K_2 = \frac{K + \left[0.5(1-\beta^2) + (1-\beta^2)^2\right]}{\beta^4} Style 0 is the standard form; style 1 is angled, with a restrition to force the flow up through the valve; style 2 is also angled but with a smaller restriction forcing the flow up. N is 400, 300, and 55 for those cases respectively. Parameters ---------- D1 : float Diameter of the valve seat bore (must be smaller or equal to `D2`), [m] D2 : float Diameter of the pipe attached to the valve, [m] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] style : int, optional One of 0, 1, or 2; refers to three different types of angle valves as shown in [1]_ [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_globe_stop_check_valve_Crane(.1, .02, style=1) 4.5235076518969795 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if fd is None: fd = ft_Crane(D2) if style == 0: K = 400.0*fd elif style == 1: K = 300.0*fd elif style == 2: K = 55.0*fd else: raise ValueError('Accepted valve styles are 0, 1, and 2 only') beta = D1/D2 if beta == 1.0: return K else: return (K + beta*(0.5*(1 - beta**2) + (1 - beta**2)**2))/beta**4
angle_stop_check_valve_Crane_coeffs = {0: 200.0, 1: 350.0, 2: 55.0}
[docs]def K_angle_stop_check_valve_Crane(D1, D2, fd=None, style=0): r'''Returns the loss coefficient for a angle stop check valve as shown in [1]_. If β = 1: .. math:: K = K_1 = K_2 = N\cdot f_d Otherwise: .. math:: K_2 = \frac{K + \left[0.5(1-\beta^2) + (1-\beta^2)^2\right]}{\beta^4} Style 0 is the standard form; style 1 has a restrition to force the flow up through the valve; style 2 is has the clearest flow area with no guides for the angle valve. N is 200, 350, and 55 for those cases respectively. Parameters ---------- D1 : float Diameter of the valve seat bore (must be smaller or equal to `D2`), [m] D2 : float Diameter of the pipe attached to the valve, [m] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] style : int, optional One of 0, 1, or 2; refers to three different types of angle valves as shown in [1]_ [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_angle_stop_check_valve_Crane(.1, .02, style=1) 4.525425593879809 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if fd is None: fd = ft_Crane(D2) if style == 0: K = 200.0*fd elif style == 1: K = 350.0*fd elif style == 2: K = 55.0*fd else: raise ValueError('Accepted valve styles are 0, 1, and 2 only') beta = D1/D2 if beta == 1: return K else: return (K + beta*(0.5*(1.0 - beta**2) + (1.0 - beta**2)**2))/beta**4
[docs]def K_ball_valve_Crane(D1, D2, angle, fd=None): r'''Returns the loss coefficient for a ball valve as shown in [1]_. If β = 1: .. math:: K = K_1 = K_2 = 3f_d If β < 1 and θ <= 45°: .. math:: K_2 = \frac{K + \sin \frac{\theta}{2} \left[0.8(1-\beta^2) + 2.6(1-\beta^2)^2\right]} {\beta^4} If β < 1 and θ > 45°: .. math:: K_2 = \frac{K + 0.5\sqrt{\sin\frac{\theta}{2}}(1-\beta^2) + (1-\beta^2)^2}{\beta^4} Parameters ---------- D1 : float Diameter of the valve seat bore (must be equal to or smaller than `D2`), [m] D2 : float Diameter of the pipe attached to the valve, [m] angle : float Angle formed by the reducer in the valve, [degrees] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_ball_valve_Crane(.01, .02, 50) 14.051310974926592 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if fd is None: fd = ft_Crane(D2) beta = D1/D2 K1 = 3*fd angle = radians(angle) if beta == 1: return K1 else: if angle <= pi/4: return (K1 + sin(angle/2)*(0.8*(1-beta**2) + 2.6*(1-beta**2)**2))/beta**4 else: return (K1 + 0.5*sqrt(sin(angle/2)) * (1 - beta**2) + (1-beta**2)**2)/beta**4
diaphragm_valve_Crane_coeffs = {0: 149.0, 1: 39.0}
[docs]def K_diaphragm_valve_Crane(D=None, fd=None, style=0): r'''Returns the loss coefficient for a diaphragm valve of either weir (`style` = 0) or straight-through (`style` = 1) as shown in [1]_. .. math:: K = K_1 = K_2 = N\cdot f_d For style 0 (weir), N = 149; for style 1 (straight through), N = 39. Parameters ---------- D : float, optional Diameter of the pipe section the valve in mounted in; the same as the line size [m] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] style : int, optional Either 0 (weir type valve) or 1 (straight through weir valve) [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_diaphragm_valve_Crane(D=.1, style=0) 2.4269804835982565 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if D is None and fd is None: raise ValueError('Either `D` or `fd` must be specified') if fd is None: fd = ft_Crane(D) if style == 0: K = 149.0*fd elif style == 1: K = 39.0*fd else: raise ValueError('Accepted valve styles are 0 (weir) or 1 (straight through) only') return K
foot_valve_Crane_coeffs = {0: 420.0, 1: 75.0}
[docs]def K_foot_valve_Crane(D=None, fd=None, style=0): r'''Returns the loss coefficient for a foot valve of either poppet disc (`style` = 0) or hinged-disk (`style` = 1) as shown in [1]_. Both valves are specified include the loss of the attached strainer. .. math:: K = K_1 = K_2 = N\cdot f_d For style 0 (poppet disk), N = 420; for style 1 (hinged disk), N = 75. Parameters ---------- D : float, optional Diameter of the pipe section the valve in mounted in; the same as the line size [m] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] style : int, optional Either 0 (poppet disk foot valve) or 1 (hinged disk foot valve) [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_foot_valve_Crane(D=0.2, style=0) 5.912221498436275 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if D is None and fd is None: raise ValueError('Either `D` or `fd` must be specified') if fd is None: fd = ft_Crane(D) if style == 0: K = 420.0*fd elif style == 1: K = 75.0*fd else: raise ValueError('Accepted valve styles are 0 (poppet disk) or 1 (hinged disk) only') return K
butterfly_valve_Crane_coeffs = {0: (45.0, 35.0, 25.0), 1: (74.0, 52.0, 43.0), 2: (218.0, 96.0, 55.0)}
[docs]def K_butterfly_valve_Crane(D, fd=None, style=0): r'''Returns the loss coefficient for a butterfly valve as shown in [1]_. Three different types are supported; Centric (`style` = 0), double offset (`style` = 1), and triple offset (`style` = 2). .. math:: K = N\cdot f_d N is obtained from the following table: +------------+---------+---------------+---------------+ | Size range | Centric | Double offset | Triple offset | +============+=========+===============+===============+ | 2" - 8" | 45 | 74 | 218 | +------------+---------+---------------+---------------+ | 10" - 14" | 35 | 52 | 96 | +------------+---------+---------------+---------------+ | 16" - 24" | 25 | 43 | 55 | +------------+---------+---------------+---------------+ The actual change of coefficients happen at <= 9" and <= 15". Parameters ---------- D : float Diameter of the pipe section the valve in mounted in; the same as the line size [m] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] style : int, optional Either 0 (centric), 1 (double offset), or 2 (triple offset) [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_butterfly_valve_Crane(D=.1, style=2) 3.5508841974793284 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if fd is None: fd = ft_Crane(D) if style == 0: c1, c2, c3 = 45.0, 35.0, 25.0 elif style == 1: c1, c2, c3 = 74.0, 52.0, 43.0 elif style == 2: c1, c2, c3 = 218.0, 96.0, 55.0 else: raise ValueError('Accepted valve styles are 0 (centric), 1 (double offset), or 2 (triple offset) only.') if D <= 0.2286: # 2-8 inches, split at 9 inch return c1*fd elif D <= 0.381: # 10-14 inches, split at 15 inch return c2*fd else: # 16-18 inches return c3*fd
plug_valve_Crane_coeffs = {0: 18.0, 1: 30.0, 2: 90.0}
[docs]def K_plug_valve_Crane(D1, D2, angle, fd=None, style=0): r'''Returns the loss coefficient for a plug valve or cock valve as shown in [1]_. If β = 1: .. math:: K = K_1 = K_2 = Nf_d Otherwise: .. math:: K_2 = \frac{K + 0.5\sqrt{\sin\frac{\theta}{2}}(1-\beta^2) + (1-\beta^2)^2}{\beta^4} Three types of plug valves are supported. For straight-through plug valves (`style` = 0), N = 18. For 3-way, flow straight through (`style` = 1) plug valves, N = 30. For 3-way, flow 90° valves (`style` = 2) N = 90. Parameters ---------- D1 : float Diameter of the valve plug bore (must be equal to or smaller than `D2`), [m] D2 : float Diameter of the pipe attached to the valve, [m] angle : float Angle formed by the reducer in the valve, [degrees] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] style : int, optional Either 0 (straight-through), 1 (3-way, flow straight-through), or 2 (3-way, flow 90°) [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions. Examples -------- >>> K_plug_valve_Crane(D1=.01, D2=.02, angle=50) 19.80513692341617 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if fd is None: fd = ft_Crane(D2) beta = D1/D2 if style == 0: K = 18.0*fd elif style == 1: K = 30.0*fd elif style == 2: K = 90.0*fd else: raise ValueError('Accepted valve styles are 0 (straight-through), 1 (3-way, flow straight-through), or 2 (3-way, flow 90°)') angle = radians(angle) if beta == 1: return K else: return (K + 0.5*sqrt(sin(angle/2)) * (1 - beta**2) + (1-beta**2)**2)/beta**4
[docs]def v_lift_valve_Crane(rho, D1=None, D2=None, style='swing check angled'): r'''Calculates the approximate minimum velocity required to lift the disk or other controlling element of a check valve to a fully open, stable, position according to the Crane method [1]_. .. math:: v_{min} = N\cdot \text{m/s} \cdot \sqrt{\frac{\text{kg/m}^3}{\rho}} .. math:: v_{min} = N\beta^2 \cdot \text{m/s} \cdot \sqrt{\frac{\text{kg/m}^3}{\rho}} See the notes for the definition of values of N and which check valves use which formulas. Parameters ---------- rho : float Density of the fluid [kg/m^3] D1 : float, optional Diameter of the valve bore (must be equal to or smaller than `D2`), [m] D2 : float, optional Diameter of the pipe attached to the valve, [m] style : str The type of valve; one of ['swing check angled', 'swing check straight', 'swing check UL', 'lift check straight', 'lift check angled', 'tilting check 5°', 'tilting check 15°', 'stop check globe 1', 'stop check angle 1', 'stop check globe 2', 'stop check angle 2', 'stop check globe 3', 'stop check angle 3', 'foot valve poppet disc', 'foot valve hinged disc'], [-] Returns ------- v_min : float Approximate minimum velocity required to keep the disc fully lifted, preventing chattering and wear [m/s] Notes ----- This equation is not dimensionless. +--------------------------+-----+------+ | Name/string | N | Full | +==========================+=====+======+ | 'swing check angled' | 45 | No | +--------------------------+-----+------+ | 'swing check straight' | 75 | No | +--------------------------+-----+------+ | 'swing check UL' | 120 | No | +--------------------------+-----+------+ | 'lift check straight' | 50 | Yes | +--------------------------+-----+------+ | 'lift check angled' | 170 | Yes | +--------------------------+-----+------+ | 'tilting check 5°' | 100 | No | +--------------------------+-----+------+ | 'tilting check 15°' | 40 | No | +--------------------------+-----+------+ | 'stop check globe 1' | 70 | Yes | +--------------------------+-----+------+ | 'stop check angle 1' | 95 | Yes | +--------------------------+-----+------+ | 'stop check globe 2' | 75 | Yes | +--------------------------+-----+------+ | 'stop check angle 2' | 75 | Yes | +--------------------------+-----+------+ | 'stop check globe 3' | 170 | Yes | +--------------------------+-----+------+ | 'stop check angle 3' | 170 | Yes | +--------------------------+-----+------+ | 'foot valve poppet disc' | 20 | No | +--------------------------+-----+------+ | 'foot valve hinged disc' | 45 | No | +--------------------------+-----+------+ Examples -------- >>> v_lift_valve_Crane(rho=998.2, D1=0.0627, D2=0.0779, style='lift check straight') 1.0252301935349286 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' specific_volume = 1./rho if D1 is not None and D2 is not None: beta = D1/D2 beta2 = beta*beta if style == 'swing check angled': return 45.0*sqrt(specific_volume) elif style == 'swing check straight': return 75.0*sqrt(specific_volume) elif style == 'swing check UL': return 120.0*sqrt(specific_volume) elif style == 'lift check straight': return 50.0*beta2*sqrt(specific_volume) elif style == 'lift check angled': return 170.0*beta2*sqrt(specific_volume) elif style == 'tilting check 5°': return 100.0*sqrt(specific_volume) elif style == 'tilting check 15°': return 40.0*sqrt(specific_volume) elif style == 'stop check globe 1': return 70.0*beta2*sqrt(specific_volume) elif style == 'stop check angle 1': return 95.0*beta2*sqrt(specific_volume) elif style in ('stop check globe 2', 'stop check angle 2'): return 75.0*beta2*sqrt(specific_volume) elif style in ('stop check globe 3', 'stop check angle 3'): return 170.0*beta2*sqrt(specific_volume) elif style == 'foot valve poppet disc': return 20.0*sqrt(specific_volume) elif style == 'foot valve hinged disc': return 45.0*sqrt(specific_volume)
CRANE_GATE_VALVE = 'CRANE_GATE_VALVE' CRANE_GLOBE_VALVE = 'CRANE_GLOBE_VALVE' CRANE_ANGLE_VALVE_0 = 'CRANE_ANGLE_VALVE_0' CRANE_ANGLE_VALVE_1 = 'CRANE_ANGLE_VALVE_1' CRANE_ANGLE_VALVE_2 = 'CRANE_ANGLE_VALVE_2' CRANE_SWING_CHECK_VALVE = 'CRANE_SWING_CHECK_VALVE' CRANE_SWING_CHECK_VALVE_ANGLED = 'CRANE_SWING_CHECK_VALVE_ANGLED' CRANE_LIFT_CHECK_VALVE = 'CRANE_LIFT_CHECK_VALVE' CRANE_LIFT_CHECK_VALVE_ANGLED = 'CRANE_LIFT_CHECK_VALVE_ANGLED' CRANE_TILTING_CHECK_VALVE_5DEG = 'CRANE_TILTING_CHECK_VALVE_5DEG' CRANE_TILTING_CHECK_VALVE_15DEG = 'CRANE_TILTING_CHECK_VALVE_15DEG' CRANE_GLOBE_STOP_CHECK_VALVE_0 = 'CRANE_GLOBE_STOP_CHECK_VALVE_0' CRANE_GLOBE_STOP_CHECK_VALVE_1 = 'CRANE_GLOBE_STOP_CHECK_VALVE_1' CRANE_GLOBE_STOP_CHECK_VALVE_2 = 'CRANE_GLOBE_STOP_CHECK_VALVE_2' CRANE_ANGLE_STOP_CHECK_VALVE_0 = 'CRANE_ANGLE_STOP_CHECK_VALVE_0' CRANE_ANGLE_STOP_CHECK_VALVE_1 = 'CRANE_ANGLE_STOP_CHECK_VALVE_1' CRANE_ANGLE_STOP_CHECK_VALVE_2 = 'CRANE_ANGLE_STOP_CHECK_VALVE_2' CRANE_BALL_VALVE = 'CRANE_BALL_VALVE' CRANE_DIAPHRAGM_VALVE_WEIR = 'CRANE_DIAPHRAGM_VALVE_WEIR' CRANE_DIAPHRAGM_VALVE_STAIGHT_THROUGH_WEIR = 'CRANE_DIAPHRAGM_VALVE_STAIGHT_THROUGH_WEIR' CRANE_FOOT_VALVE_POPPET_DISK = 'CRANE_FOOT_VALVE_POPPET_DISK' CRANE_FOOT_VALVE_HINGED_DISK = 'CRANE_FOOT_VALVE_HINGED_DISK' CRANE_BUTTERFLY_VALVE_CENTRIC = 'CRANE_BUTTERFLY_VALVE_CENTRIC' CRANE_BUTTERFLY_VALVE_DOUBLE_OFFSET = 'CRANE_BUTTERFLY_VALVE_DOUBLE_OFFSET' CRANE_BUTTERFLY_VALVE_TRIPLE_OFFSET = 'CRANE_BUTTERFLY_VALVE_TRIPLE_OFFSET' CRANE_PLUG_VALVE_STRAIGHT_THROUGH = 'CRANE_PLUG_VALVE_STRAIGHT_THROUGH' CRANE_PLUG_VALVE_3_WAY_STRAIGHT_THROUGH = 'CRANE_PLUG_VALVE_3_WAY_STRAIGHT_THROUGH' CRANE_PLUG_VALVE_3_WAY_90_DEG = 'CRANE_PLUG_VALVE_3_WAY_90_DEG' CRANE_VALVES = [CRANE_GATE_VALVE, CRANE_GLOBE_VALVE, CRANE_ANGLE_VALVE_0, CRANE_ANGLE_VALVE_1, CRANE_ANGLE_VALVE_2, CRANE_SWING_CHECK_VALVE, CRANE_SWING_CHECK_VALVE_ANGLED, CRANE_LIFT_CHECK_VALVE, CRANE_LIFT_CHECK_VALVE_ANGLED, CRANE_TILTING_CHECK_VALVE_5DEG, CRANE_TILTING_CHECK_VALVE_15DEG, CRANE_GLOBE_STOP_CHECK_VALVE_0, CRANE_GLOBE_STOP_CHECK_VALVE_1, CRANE_GLOBE_STOP_CHECK_VALVE_2, CRANE_ANGLE_STOP_CHECK_VALVE_0, CRANE_ANGLE_STOP_CHECK_VALVE_1, CRANE_ANGLE_STOP_CHECK_VALVE_2, CRANE_BALL_VALVE, CRANE_DIAPHRAGM_VALVE_WEIR, CRANE_DIAPHRAGM_VALVE_STAIGHT_THROUGH_WEIR, CRANE_FOOT_VALVE_POPPET_DISK, CRANE_FOOT_VALVE_HINGED_DISK, CRANE_BUTTERFLY_VALVE_CENTRIC, CRANE_BUTTERFLY_VALVE_DOUBLE_OFFSET, CRANE_BUTTERFLY_VALVE_TRIPLE_OFFSET, CRANE_PLUG_VALVE_STRAIGHT_THROUGH, CRANE_PLUG_VALVE_3_WAY_STRAIGHT_THROUGH, CRANE_PLUG_VALVE_3_WAY_90_DEG, ] def Crane_loss_coefficient(D1, D2, angle, fitting, fd=None): r'''Returns the loss coefficient for a particular Crane valve fitting. [1]_. This function is intended for internal use, to test all the correlations, at this point. Parameters ---------- D1 : float Diameter of the valve plug bore (must be equal to or smaller than `D2`), [m] D2 : float Diameter of the pipe attached to the valve, [m] angle : float Angle formed by the reducer in the valve, [degrees] fitting : str Text strings which represent a fitting, [-] fd : float, optional Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-] Returns ------- K : float Loss coefficient with respect to the pipe inside diameter [-] Notes ----- Examples -------- >>> Crane_loss_coefficient(D1=.01, D2=.02, fitting=CRANE_SWING_CHECK_VALVE_ANGLED, angle=50) 2.3974274785373257 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' if fitting == CRANE_GATE_VALVE: return K_gate_valve_Crane(D1, D2, angle, fd=fd) elif fitting == CRANE_GLOBE_VALVE: return K_globe_valve_Crane(D1, D2, fd) elif fitting == CRANE_ANGLE_VALVE_0: return K_angle_valve_Crane(D1, D2, fd, 0) elif fitting == CRANE_ANGLE_VALVE_1: return K_angle_valve_Crane(D1, D2, fd, 1) elif fitting == CRANE_ANGLE_VALVE_2: return K_angle_valve_Crane(D1, D2, fd, 2) elif fitting == CRANE_SWING_CHECK_VALVE: return K_swing_check_valve_Crane(D2, fd, False) elif fitting == CRANE_SWING_CHECK_VALVE_ANGLED: return K_swing_check_valve_Crane(D2, fd, True) elif fitting == CRANE_LIFT_CHECK_VALVE: return K_lift_check_valve_Crane(D1, D2, fd, False) elif fitting == CRANE_LIFT_CHECK_VALVE_ANGLED: return K_lift_check_valve_Crane(D1, D2, fd, True) elif fitting == CRANE_TILTING_CHECK_VALVE_5DEG: return K_tilting_disk_check_valve_Crane(D2, 5.0, fd) elif fitting == CRANE_TILTING_CHECK_VALVE_15DEG: return K_tilting_disk_check_valve_Crane(D2, 15.0, fd) elif fitting == CRANE_GLOBE_STOP_CHECK_VALVE_0: return K_globe_stop_check_valve_Crane(D1, D2, fd, 0) elif fitting == CRANE_GLOBE_STOP_CHECK_VALVE_1: return K_globe_stop_check_valve_Crane(D1, D2, fd, 1) elif fitting == CRANE_GLOBE_STOP_CHECK_VALVE_2: return K_globe_stop_check_valve_Crane(D1, D2, fd, 2) elif fitting == CRANE_ANGLE_STOP_CHECK_VALVE_0: return K_angle_stop_check_valve_Crane(D1, D2, fd, 0) elif fitting == CRANE_ANGLE_STOP_CHECK_VALVE_1: return K_angle_stop_check_valve_Crane(D1, D2, fd, 1) elif fitting == CRANE_ANGLE_STOP_CHECK_VALVE_2: return K_angle_stop_check_valve_Crane(D1, D2, fd, 2) elif fitting == CRANE_BALL_VALVE: return K_ball_valve_Crane(D1, D2, angle, fd) elif fitting == CRANE_DIAPHRAGM_VALVE_WEIR: return K_diaphragm_valve_Crane(D2, fd, 0) elif fitting == CRANE_DIAPHRAGM_VALVE_STAIGHT_THROUGH_WEIR: return K_diaphragm_valve_Crane(D2, fd, 1) elif fitting == CRANE_FOOT_VALVE_POPPET_DISK: return K_foot_valve_Crane(D2, fd, 0) elif fitting == CRANE_FOOT_VALVE_HINGED_DISK: return K_foot_valve_Crane(D2, fd, 1) elif fitting == CRANE_BUTTERFLY_VALVE_CENTRIC: return K_butterfly_valve_Crane(D2, fd, 0) elif fitting == CRANE_BUTTERFLY_VALVE_DOUBLE_OFFSET: return K_butterfly_valve_Crane(D2, fd, 1) elif fitting == CRANE_BUTTERFLY_VALVE_TRIPLE_OFFSET: return K_butterfly_valve_Crane(D2, fd, 2) elif fitting == CRANE_PLUG_VALVE_STRAIGHT_THROUGH: return K_plug_valve_Crane(D1, D2, angle, fd, 0) elif fitting == CRANE_PLUG_VALVE_3_WAY_STRAIGHT_THROUGH: return K_plug_valve_Crane(D1, D2, angle, fd, 1) elif fitting == CRANE_PLUG_VALVE_3_WAY_90_DEG: return K_plug_valve_Crane(D1, D2, angle, fd, 2) else: raise ValueError("Unrecognized fitting") branch_converging_Crane_Fs = [1.74, 1.41, 1.0, 0.0] branch_converging_Crane_angles = [30.0, 45.0, 60.0, 90.0]
[docs]def K_branch_converging_Crane(D_run, D_branch, Q_run, Q_branch, angle=90.0): r'''Returns the loss coefficient for the branch of a converging tee or wye according to the Crane method [1]_. .. math:: K_{branch} = C\left[1 + D\left(\frac{Q_{branch}}{Q_{comb}\cdot \beta_{branch}^2}\right)^2 - E\left(1 - \frac{Q_{branch}}{Q_{comb}} \right)^2 - \frac{F}{\beta_{branch}^2} \left(\frac{Q_{branch}} {Q_{comb}}\right)^2\right] .. math:: \beta_{branch} = \frac{D_{branch}}{D_{comb}} = \frac{D_{branch}}{D_{run}} In the above equation, D = 1, E = 2. See the notes for definitions of F and C. The run and combined diameter are assumed the same in this model. Parameters ---------- D_run : float Diameter of the straight-through inlet portion of the tee or wye [m] D_branch : float Diameter of the pipe attached at an angle to the straight-through, [m] Q_run : float Volumetric flow rate in the straight-through inlet of the tee or wye, [m^3/s] Q_branch : float Volumetric flow rate in the pipe attached at an angle to the straight- through, [m^3/s] angle : float, optional Angle the branch makes with the straight-through (tee=90, wye<90) [degrees] Returns ------- K : float Loss coefficient of branch with respect to the velocity and inside diameter of the combined flow outlet [-] Notes ----- F is linearly interpolated from the table of angles below. There is no cutoff to prevent angles from being larger or smaller than 30 or 90 degrees. +-----------+------+ | Angle [°] | | +===========+======+ | 30 | 1.74 | +-----------+------+ | 45 | 1.41 | +-----------+------+ | 60 | 1 | +-----------+------+ | 90 | 0 | +-----------+------+ If :math:`\beta_{branch}^2 \le 0.35`, C = 1 If :math:`\beta_{branch}^2 > 0.35` and :math:`Q_{branch}/Q_{comb} > 0.4`, C = 0.55. If neither of the above conditions are met: .. math:: C = 0.9\left(1 - \frac{Q_{branch}}{Q_{comb}}\right) Note that there is an error in the text of [1]_; the errata can be obtained here: http://www.flowoffluids.com/publications/tp-410-errata.aspx Examples -------- Example 7-35 of [1]_. A DN100 schedule 40 tee has 1135 liters/minute of water passing through the straight leg, and 380 liters/minute of water converging with it through a 90° branch. Calculate the loss coefficient in the branch. The calculated value there is -0.04026. >>> K_branch_converging_Crane(0.1023, 0.1023, 0.018917, 0.00633) -0.0404410851362 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' beta = (D_branch/D_run) beta2 = beta*beta Q_comb = Q_run + Q_branch Q_ratio = Q_branch/Q_comb if beta2 <= 0.35: C = 1. elif Q_ratio <= 0.4: C = 0.9*(1 - Q_ratio) else: C = 0.55 D, E = 1., 2. F = interp(angle, branch_converging_Crane_angles, branch_converging_Crane_Fs) K = C*(1. + D*(Q_ratio/beta2)**2 - E*(1. - Q_ratio)**2 - F/beta2*Q_ratio**2) return K
run_converging_Crane_Fs = [1.74, 1.41, 1.0] run_converging_Crane_angles = [30.0, 45.0, 60.0]
[docs]def K_run_converging_Crane(D_run, D_branch, Q_run, Q_branch, angle=90): r'''Returns the loss coefficient for the run of a converging tee or wye according to the Crane method [1]_. .. math:: K_{branch} = C\left[1 + D\left(\frac{Q_{branch}}{Q_{comb}\cdot \beta_{branch}^2}\right)^2 - E\left(1 - \frac{Q_{branch}}{Q_{comb}} \right)^2 - \frac{F}{\beta_{branch}^2} \left(\frac{Q_{branch}} {Q_{comb}}\right)^2\right] .. math:: \beta_{branch} = \frac{D_{branch}}{D_{comb}} = \frac{D_{branch}}{D_{run}} In the above equation, C=1, D=0, E=1. See the notes for definitions of F and also the special case of 90°. The run and combined diameter are assumed the same in this model. Parameters ---------- D_run : float Diameter of the straight-through inlet portion of the tee or wye [m] D_branch : float Diameter of the pipe attached at an angle to the straight-through, [m] Q_run : float Volumetric flow rate in the straight-through inlet of the tee or wye, [m^3/s] Q_branch : float Volumetric flow rate in the pipe attached at an angle to the straight- through, [m^3/s] angle : float, optional Angle the branch makes with the straight-through (tee=90, wye<90) [degrees] Returns ------- K : float Loss coefficient of run with respect to the velocity and inside diameter of the combined flow outlet [-] Notes ----- F is linearly interpolated from the table of angles below. There is no cutoff to prevent angles from being larger or smaller than 30 or 60 degrees. The switch to the special 90° happens at 75°. +-----------+------+ | Angle [°] | | +===========+======+ | 30 | 1.74 | +-----------+------+ | 45 | 1.41 | +-----------+------+ | 60 | 1 | +-----------+------+ For the special case of 90°, the formula used is as follows. .. math:: K_{run} = 1.55\left(\frac{Q_{branch}}{Q_{comb}} \right) - \left(\frac{Q_{branch}}{Q_{comb}}\right)^2 Examples -------- Example 7-35 of [1]_. A DN100 schedule 40 tee has 1135 liters/minute of water passing through the straight leg, and 380 liters/minute of water converging with it through a 90° branch. Calculate the loss coefficient in the run. The calculated value there is 0.03258. >>> K_run_converging_Crane(0.1023, 0.1023, 0.018917, 0.00633) 0.32575847854551254 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' beta = (D_branch/D_run) beta2 = beta*beta Q_comb = Q_run + Q_branch Q_ratio = Q_branch/Q_comb if angle < 75.0: C = 1.0 else: return 1.55*(Q_ratio) - Q_ratio*Q_ratio D, E = 0.0, 1.0 F = interp(angle, run_converging_Crane_angles, run_converging_Crane_Fs) K = C*(1. + D*(Q_ratio/beta2)**2 - E*(1. - Q_ratio)**2 - F/beta2*Q_ratio**2) return K
[docs]def K_branch_diverging_Crane(D_run, D_branch, Q_run, Q_branch, angle=90): r'''Returns the loss coefficient for the branch of a diverging tee or wye according to the Crane method [1]_. .. math:: K_{branch} = G\left[1 + H\left(\frac{Q_{branch}}{Q_{comb} \beta_{branch}^2}\right)^2 - J\left(\frac{Q_{branch}}{Q_{comb} \beta_{branch}^2}\right)\cos\theta\right] .. math:: \beta_{branch} = \frac{D_{branch}}{D_{comb}} = \frac{D_{branch}}{D_{run}} See the notes for definitions of H, J, and G. The run and combined diameter are assumed the same in this model. Parameters ---------- D_run : float Diameter of the straight-through inlet portion of the tee or wye [m] D_branch : float Diameter of the pipe attached at an angle to the straight-through, [m] Q_run : float Volumetric flow rate in the straight-through outlet of the tee or wye, [m^3/s] Q_branch : float Volumetric flow rate in the pipe attached at an angle to the straight- through, [m^3/s] angle : float, optional Angle the branch makes with the straight-through (tee=90, wye<90) [degrees] Returns ------- K : float Loss coefficient of branch with respect to the velocity and inside diameter of the combined flow inlet [-] Notes ----- If :math:`\beta_{branch} = 1, \theta = 90^\circ`, H = 0.3 and J = 0. Otherwise H = 1 and J = 2. G is determined according to the following pseudocode: .. code-block:: python if angle < 75: if beta2 <= 0.35: if Q_ratio <= 0.4: G = 1.1 - 0.7*Q_ratio else: G = 0.85 else: if Q_ratio <= 0.6: G = 1.0 - 0.6*Q_ratio else: G = 0.6 else: if beta2 <= 2/3.: G = 1 else: G = 1 + 0.3*Q_ratio*Q_ratio Note that there are several errors in the text of [1]_; the errata can be obtained here: http://www.flowoffluids.com/publications/tp-410-errata.aspx Examples -------- Example 7-36 of [1]_. A DN150 schedule 80 wye has 1515 liters/minute of water exiting the straight leg, and 950 liters/minute of water exiting it through a 45° branch. Calculate the loss coefficient in the branch. The calculated value there is 0.4640. >>> K_branch_diverging_Crane(0.146, 0.146, 0.02525, 0.01583, angle=45) 0.4639895627496694 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' beta = (D_branch/D_run) beta2 = beta*beta Q_comb = Q_run + Q_branch Q_ratio = Q_branch/Q_comb if angle < 60 or beta <= 2/3.: H, J = 1., 2. else: H, J = 0.3, 0 if angle < 75: if beta2 <= 0.35: if Q_ratio <= 0.4: G = 1.1 - 0.7*Q_ratio else: G = 0.85 else: if Q_ratio <= 0.6: G = 1.0 - 0.6*Q_ratio else: G = 0.6 else: if beta2 <= 2/3.: G = 1 else: G = 1 + 0.3*Q_ratio*Q_ratio angle_rad = radians(angle) K_branch = G*(1 + H*(Q_ratio/beta2)**2 - J*(Q_ratio/beta2)*cos(angle_rad)) return K_branch
[docs]def K_run_diverging_Crane(D_run, D_branch, Q_run, Q_branch, angle=90): r'''Returns the loss coefficient for the run of a converging tee or wye according to the Crane method [1]_. .. math:: K_{run} = M \left(\frac{Q_{branch}}{Q_{comb}}\right)^2 .. math:: \beta_{branch} = \frac{D_{branch}}{D_{comb}} = \frac{D_{branch}}{D_{run}} See the notes for the definition of M. The run and combined diameter are assumed the same in this model. Parameters ---------- D_run : float Diameter of the straight-through inlet portion of the tee or wye [m] D_branch : float Diameter of the pipe attached at an angle to the straight-through, [m] Q_run : float Volumetric flow rate in the straight-through outlet of the tee or wye, [m^3/s] Q_branch : float Volumetric flow rate in the pipe attached at an angle to the straight- through, [m^3/s] angle : float, optional Angle the branch makes with the straight-through (tee=90, wye<90) [degrees] Returns ------- K : float Loss coefficient of run with respect to the velocity and inside diameter of the combined flow inlet [-] Notes ----- M is calculated according to the following pseudocode: .. code-block:: python if beta*beta <= 0.4: M = 0.4 elif Q_branch/Q_comb <= 0.5: M = 2*(2*Q_branch/Q_comb - 1) else: M = 0.3*(2*Q_branch/Q_comb - 1) Examples -------- Example 7-36 of [1]_. A DN150 schedule 80 wye has 1515 liters/minute of water exiting the straight leg, and 950 liters/minute of water exiting it through a 45° branch. Calculate the loss coefficient in the branch. The calculated value there is -0.06809. >>> K_run_diverging_Crane(0.146, 0.146, 0.02525, 0.01583, angle=45) -0.06810067607153049 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' beta = (D_branch/D_run) beta2 = beta*beta Q_comb = Q_run + Q_branch Q_ratio = Q_branch/Q_comb if beta2 <= 0.4: M = 0.4 elif Q_ratio <= 0.5: M = 2.*(2.*Q_ratio - 1.) else: M = 0.3*(2.*Q_ratio - 1.) return M*Q_ratio*Q_ratio